
Iolanda Lazaro Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5350093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meta-Inflammation and De Novo Lipogenesis Markers Are Involved in Metabolic Associated Fatty Liver Disease Progression in BTBR ob/ob Mice. International Journal of Molecular Sciences, 2022, 23, 3965.	4.1	8
2	KHK, PNPLA3 and PPAR as Novel Targets for the Anti-Steatotic Action of Bempedoic Acid. Biomedicines, 2022, 10, 1517.	3.2	6
3	Linoleic Acid Status in Cell Membranes Inversely Relates to the Prevalence of Symptomatic Carotid Artery Disease. Stroke, 2021, 52, 703-706.	2.0	5
4	Circulating Omega-3 Fatty Acids and Incident Adverse Events in Patients With Acute Myocardial Infarction. Journal of the American College of Cardiology, 2020, 76, 2089-2097.	2.8	19
5	Effects of a Low Dose of Caffeine Alone or as Part of a Green Coffee Extract, in a Rat Dietary Model of Lean Non-Alcoholic Fatty Liver Disease without Inflammation. Nutrients, 2020, 12, 3240.	4.1	23
6	Ellagic Acid as a Tool to Limit the Diabetes Burden: Updated Evidence. Antioxidants, 2020, 9, 1226.	5.1	40
7	Short-term treatment with high dose liraglutide improves lipid and lipoprotein profile and changes hormonal mediators of lipid metabolism in obese patients with no overt type 2 diabetes mellitus: a randomized, placebo-controlled, cross-over, double-blind clinical trial. Cardiovascular Diabetology, 2019. 18. 141.	6.8	30
8	Mechanisms underlying the cardiometabolic protective effect of walnut consumption in obese people: A crossâ€over, randomized, doubleâ€blind, controlled inpatient physiology study. Diabetes, Obesity and Metabolism, 2019, 21, 2086-2095.	4.4	33
9	SOCS1-targeted therapy ameliorates renal and vascular oxidative stress in diabetes via STAT1 and PI3K inhibition. Laboratory Investigation, 2018, 98, 1276-1290.	3.7	45
10	Nrf2 Activation Provides Atheroprotection in Diabetic Mice Through Concerted Upregulation of Antioxidant, Anti-inflammatory, and Autophagy Mechanisms. Frontiers in Pharmacology, 2018, 9, 819.	3.5	59
11	Interplay between HSP90 and Nrf2 pathways in diabetes-associated atherosclerosis. ClÃnica E Investigación En Arteriosclerosis, 2017, 29, 51-59.	0.8	21
12	Interplay between HSP90 and Nrf2 pathways in diabetes-associated atherosclerosis. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2017, 29, 51-59.	0.2	0
13	Suppressor of Cytokine Signaling-1 Peptidomimetic Limits Progression of Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 575-585.	6.1	54
14	Gene delivery of suppressors of cytokine signaling (SOCS) inhibits inflammation and atherosclerosis development in mice. Basic Research in Cardiology, 2015, 110, 8.	5.9	28
15	Targeting HSP90 Ameliorates Nephropathy and Atherosclerosis Through Suppression of NF-κB and STAT Signaling Pathways in Diabetic Mice. Diabetes, 2015, 64, 3600-3613.	0.6	64
16	Peptide-based inhibition of lÎ⁰B kinase/nuclear factor-κB pathway protects against diabetes-associated nephropathy and atherosclerosis in a mouse model of type 1 diabetes. Diabetologia, 2015, 58, 1656-1667.	6.3	40
17	Suppressor of Cytokine Signaling 1–Derived Peptide Inhibits Janus Kinase/Signal Transducers and Activators of Transcription Pathway and Improves Inflammation and Atherosclerosis in Diabetic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1953-1960.	2.4	59
18	Parallel evolution of circulating FABP4 and NT-proBNP in heart failure patients. Cardiovascular Diabetology, 2013, 12, 72.	6.8	19

IOLANDA LAZARO LOPEZ

#	Article	IF	CITATIONS
19	Akt and ERK/Nrf2 activation by PUFA oxidation-derived aldehydes upregulates FABP4 expression in human macrophages. Atherosclerosis, 2013, 230, 216-222.	0.8	16
20	Peptide Inhibitor of NF-κB Translocation Ameliorates Experimental Atherosclerosis. American Journal of Pathology, 2013, 182, 1910-1921.	3.8	52
21	Gene Deficiency in Activating Fcl ³ Receptors Influences the Macrophage Phenotypic Balance and Reduces Atherosclerosis in Mice. PLoS ONE, 2013, 8, e66754.	2.5	25
22	FABP4 predicts atherogenic dyslipidemia development. The PREDIMED study. Atherosclerosis, 2012, 222, 229-234.	0.8	28
23	Lifestyle Changes Lower FABP4 Plasma Concentration in Patients With Cardiovascular Risk. Revista Espanola De Cardiologia (English Ed), 2012, 65, 152-157.	0.6	3
24	Cambios de estilo de vida disminuyen las concentraciones plasmáticas de FABP4 en pacientes con riesgo cardiovascular. Revista Espanola De Cardiologia, 2012, 65, 152-157.	1.2	13
25	Fatty acid-binding protein-4 plasma levels are associated to metabolic abnormalities and response to therapy in girls and young women with androgen excess. Gynecological Endocrinology, 2011, 27, 935-939.	1.7	12
26	FABP4 plasma levels are increased in familial combined hyperlipidemia. Journal of Lipid Research, 2010, 51, 1173-1178.	4.2	11
27	The APOA5â^1131 T>C variant enhances the association between RBP4 and hypertriglyceridemia in diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 2010, 20, 243-248.	2.6	8
28	APOH is increased in the plasma and liver of type 2 diabetic patients with metabolic syndrome. Atherosclerosis, 2010, 209, 201-205.	0.8	38
29	Fatty acid-binding protein 4 is associated with endothelial dysfunction in patients with type 2 diabetes. Atherosclerosis, 2010, 213, 329-331.	0.8	55
30	FABP4 plasma levels are increased in familial combined hyperlipidemia. Journal of Lipid Research, 2010, 51, 1173-1178.	4.2	26
31	The fatty acid binding protein-4 (FABP4) is a strong biomarker of metabolic syndrome and lipodystrophy in HIV-infected patients. Atherosclerosis, 2008, 199, 147-153.	0.8	32
32	Plasma Fatty Acid-Binding Protein 4 Increases with Renal Dysfunction in Type 2 Diabetic Patients without Microalbuminuria. Clinical Chemistry, 2008, 54, 181-187.	3.2	49
33	Plasma fatty acid binding protein 4 is associated with atherogenic dyslipidemia in diabetes. Journal of Lipid Research, 2008, 49, 1746-1751.	4.2	80
34	Fatty acid binding protein 4 is increased in metabolic syndrome and with thiazolidinedione treatment in diabetic patients. Atherosclerosis, 2007, 195, e150-e158.	0.8	140
35	Retinolâ€binding protein 4 as a plasma biomarker of renal dysfunction and cardiovascular disease in type 2 diabetes. Journal of Internal Medicine, 2007, 262, 496-503.	6.0	106