Zhaohui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/534998/publications.pdf Version: 2024-02-01

<u> 7наони Малс</u>

#	Article	IF	CITATIONS
1	Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors. Biomedical Materials (Bristol), 2022, 17, 024107.	3.3	15
2	Sustainable Phytic Acid–Zinc Anticorrosion Interface for Highly Reversible Zinc Metal Anodes. ACS Applied Materials & Interfaces, 2022, 14, 10419-10427.	8.0	27
3	Lithiumâ€Diffusion Induced Capacity Losses in Lithiumâ€Based Batteries. Advanced Materials, 2022, 34, e2108827.	21.0	44
4	Flexible zincophilic polypyrrole paper interlayers for stable Zn metal anodes: Higher surface flatness promises better reversibility. Nano Energy, 2022, 98, 107329.	16.0	36
5	In-situ crosslinked Zn2+-conducting polymer complex interphase with synergistic anion shielding and cation regulation for high-rate and dendrite-free zinc metal anodes. Chemical Engineering Journal, 2022, 448, 137653.	12.7	18
6	Why Celluloseâ€Based Electrochemical Energy Storage Devices?. Advanced Materials, 2021, 33, e2000892.	21.0	125
7	Woodâ€Đerived Systems for Sustainable Oil/Water Separation. Advanced Sustainable Systems, 2021, 5, 2100039.	5.3	22
8	Energyâ€Storage Materials: Why Celluloseâ€Based Electrochemical Energy Storage Devices? (Adv. Mater.) Tj ETQ	0000 rgl	3T ₂ /Overlock
	First vcle Oxidative Generation of Lithium Nucleation Sites Stabilizes Lithiumâ€Metal Electrodes.		

9	Advanced Energy Materials, 2021, 11, 2003674.	19.5	18
10	On the Capacities of Freestanding Vanadium Pentoxide–Carbon Nanotube–Nanocellulose Paper Electrodes for Charge Storage Applications. Energy Technology, 2020, 8, 2000731.	3.8	4
11	Highly Crystalline PEDOT Nanofiber Templated by Highly Crystalline Nanocellulose. Advanced Functional Materials, 2020, 30, 2005757.	14.9	31
12	Electrochemically Active, Compressible, and Conducting Silk Fibroin Hydrogels. Industrial & Engineering Chemistry Research, 2020, 59, 9310-9317.	3.7	27
13	<i>Cladophora</i> Cellulose: Unique Biopolymer Nanofibrils for Emerging Energy, Environmental, and Life Science Applications. Accounts of Chemical Research, 2019, 52, 2232-2243.	15.6	76
14	Flexible Freestanding MoO 3â^' x –Carbon Nanotubes–Nanocellulose Paper Electrodes for Charge‣torage Applications. ChemSusChem, 2019, 12, 5157-5163.	6.8	20
15	Double-sided conductive separators for lithium-metal batteries. Energy Storage Materials, 2019, 21, 464-473.	18.0	34
16	Polydopamine-based redox-active separators for lithium-ion batteries. Journal of Materiomics, 2019, 5, 204-213.	5.7	20
17	Sandwich-structured nano/micro fiber-based separators for lithium metal batteries. Nano Energy, 2019, 55, 316-326.	16.0	84
18	Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries. Small, 2018, 14, e1704371.	10.0	130

Zhaohui Wang

#	Article	IF	CITATIONS
19	Conducting polymer paper-derived separators for lithium metal batteries. Energy Storage Materials, 2018, 13, 283-292.	18.0	64
20	Redoxâ€Active Separators for Lithiumâ€Ion Batteries. Advanced Science, 2018, 5, 1700663.	11.2	48
21	Carbonized cellulose beads for efficient capacitive energy storage. Cellulose, 2018, 25, 3545-3556.	4.9	12
22	Lightweight, Thin, and Flexible Silver Nanopaper Electrodes for Highâ€Capacity Dendriteâ€Free Sodium Metal Anodes. Advanced Functional Materials, 2018, 28, 1804038.	14.9	73
23	Conducting Polymer Paper-Derived Mesoporous 3D N-doped Carbon Current Collectors for Na and Li Metal Anodes: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2018, 122, 23352-23363.	3.1	27
24	Nanocellulose Structured Paper-Based Lithium Metal Batteries. ACS Applied Energy Materials, 2018, 1, 4341-4350.	5.1	45
25	LiTDI: A Highly Efficient Additive for Electrolyte Stabilization in Lithium-Ion Batteries. Chemistry of Materials, 2017, 29, 2254-2263.	6.7	69
26	Celluloseâ€based Supercapacitors: Material and Performance Considerations. Advanced Energy Materials, 2017, 7, 1700130.	19.5	175
27	Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose, 2017, 24, 2903-2911.	4.9	53
28	Mesoporous Cladophora cellulose separators for lithium-ion batteries. Journal of Power Sources, 2016, 321, 185-192.	7.8	98
29	Bioelectrodes based on pseudocapacitive cellulose/polypyrrole composite improve performance of biofuel cell. Bioelectrochemistry, 2016, 112, 184-190.	4.6	23
30	Binder-free nitrogen-doped carbon paper electrodes derived from polypyrrole/cellulose composite for Li–O2 batteries. Journal of Power Sources, 2016, 306, 559-566.	7.8	36
31	Solution-processed poly(3,4-ethylenedioxythiophene) nanocomposite paper electrodes for high-capacitance flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 1714-1722.	10.3	114
32	Conducting Polymer Paperâ€Based Cathodes for Highâ€Areal apacity Lithium–Organic Batteries. Energy Technology, 2015, 3, 563-569.	3.8	21
33	Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14109-14115.	10.3	91
34	Asymmetric supercapacitors based on carbon nanofibre and polypyrrole/nanocellulose composite electrodes. RSC Advances, 2015, 5, 16405-16413.	3.6	54
35	Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale, 2015, 7, 3418-3423.	5.6	117
36	Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances. ACS Nano, 2015, 9, 7563-7571.	14.6	229

Zhaohui Wang

#	Article	IF	CITATIONS
37	Biosupercapacitors for powering oxygen sensing devices. Bioelectrochemistry, 2015, 106, 34-40.	4.6	47
38	Pseudocapacitive polypyrrole–nanocellulose composite for sugar-air enzymatic fuel cells. Electrochemistry Communications, 2015, 50, 55-59.	4.7	35
39	High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors. Journal of Materials Chemistry A, 2014, 2, 16761-16769.	10.3	88
40	Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications. Nanoscale, 2014, 6, 13068-13075.	5.6	91
41	Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole–nanocellulose electrodes. Journal of Materials Chemistry A, 2014, 2, 7711-7716.	10.3	62
42	Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries. Carbon, 2014, 69, 302-310.	10.3	79
43	Controllable synthesis of spherical Li3V2(PO4)3/C cathode material and its electrochemical performance. Electrochimica Acta, 2013, 90, 433-439.	5.2	41
44	High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole. Electrochimica Acta, 2013, 106, 320-326.	5.2	160
45	Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon, 2013, 55, 328-334.	10.3	589
46	High-performance Li3V2(PO4)3/C cathode materials prepared via a sol–gel route with double carbon sources. Journal of Alloys and Compounds, 2012, 513, 414-419.	5.5	40
47	LiFe0.8Mn0.2PO4/C cathode material with high energy density for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 532, 25-30.	5.5	53
48	Effects of titanium incorporation on phase and electrochemical performance in LiFePO4 cathode material. Electrochimica Acta, 2012, 78, 576-584.	5.2	33
49	Morphology-controllable solvothermal synthesis of nanoscale LiFePO4 in a binary solvent. Science Bulletin, 2012, 57, 4170-4175.	1.7	15
50	Electrochemical performance in Na-incorporated nonstoichiometric LiFePO4/C composites with controllable impurity phases. Electrochimica Acta, 2012, 62, 416-423.	5.2	25
51	Mn3O4 nanocrystals anchored on multi-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries. Materials Letters, 2012, 80, 110-113.	2.6	75
52	Nitrogenâ€Đoped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability. Advanced Materials, 2012, 24, 2047-2050.	21.0	1,541
53	SnO2-based composite coaxial nanocables with multi-walled carbon nanotube and polypyrrole as anode materials for lithium-ion batteries. Electrochemistry Communications, 2011, 13, 1431-1434.	4.7	44
54	Effects of Na+ and Clâ^ co-doping on electrochemical performance in LiFePO4/C. Electrochimica Acta, 2011, 56, 8477-8483.	5.2	64

#	Article	IF	CITATIONS
55	Development and challenges of LiFePO ₄ cathode material for lithium-ion batteries. Energy and Environmental Science, 2011, 4, 269-284.	30.8	1,058