Eric Westhof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5349878/publications.pdf Version: 2024-02-01

		3721	6454
262	28,227	89	157
papers	citations	h-index	g-index
331	331	331	19366
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genome evolution in yeasts. Nature, 2004, 430, 35-44.	13.7	1,498
2	Halogen bonds in biological molecules. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16789-16794.	3.3	1,469
3	Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. Journal of Molecular Biology, 1990, 216, 585-610.	2.0	1,253
4	Geometric nomenclature and classification of RNA base pairs. Rna, 2001, 7, 499-512.	1.6	877
5	Single Processing Center Models for Human Dicer and Bacterial RNase III. Cell, 2004, 118, 57-68.	13.5	860
6	The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Research, 2002, 30, 3497-3531.	6.5	679
7	A standard reference frame for the description of nucleic acid base-pair geometry 1 1Edited by P. E. Wright 2 2This is a document of the Nomenclature Committee of IUBMB (NC-IUBMB)/IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN), whose members are R. Cammack (chairman), A. Bairoch, H.M. Berman, S. Boyce, C.R. Cantor, K. Elliott, D. Horton, M. Kanehisa, A. Kotyk, G.P. Moss, N.	2.0	533
8	HIERARCHY AND DYNAMICS OF RNA FOLDING. Annual Review of Biophysics and Biomolecular Structure, 1997, 26, 113-137.	18.3	522
9	Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nature Structural and Molecular Biology, 2003, 10, 708-712.	3.6	404
10	Crystal Structure of Paromomycin Docked into the Eubacterial Ribosomal Decoding A Site. Structure, 2001, 9, 647-658.	1.6	363
11	Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Research, 2005, 33, 5677-5690.	6.5	323
12	Biogenesis of Circular RNAs. Cell, 2014, 159, 13-14.	13.5	309
13	The Dynamic Landscapes of RNA Architecture. Cell, 2009, 136, 604-609.	13.5	303
14	A new understanding of the decoding principle on the ribosome. Nature, 2012, 484, 256-259.	13.7	293
15	New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. Chemistry and Biology, 1996, 3, 993-1009.	6.2	280
16	Analysis of RNA motifs. Current Opinion in Structural Biology, 2003, 13, 300-308.	2.6	274
17	Topology of three-way junctions in folded RNAs. Rna, 2006, 12, 83-93.	1.6	264
18	Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome. Science, 2009, 326, 1369-1373.	6.0	263

#	Article	IF	CITATIONS
19	Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate. Science, 2010, 330, 1381-1385.	6.0	251
20	Water and ion binding around RNA and DNA (C,G) oligomers11Edited by I. Tinoco. Journal of Molecular Biology, 2000, 300, 1113-1131.	2.0	248
21	TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Research, 2001, 29, 455-463.	6.5	242
22	<i>RNA-Puzzles</i> : A CASP-like evaluation of RNA three-dimensional structure prediction. Rna, 2012, 18, 610-625.	1.6	241
23	Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. Journal of Molecular Biology, 1994, 236, 1271-1276.	2.0	240
24	Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Research, 2003, 31, 3450-3460.	6.5	240
25	Two conformational states in the crystal structure of the Homo sapiens cytoplasmic ribosomal decoding A site. Nucleic Acids Research, 2006, 34, 676-685.	6.5	235
26	Crystal Structure of a Complex between the Aminoglycoside Tobramycin and an Oligonucleotide Containing the Ribosomal Decoding A Site. Chemistry and Biology, 2002, 9, 747-755.	6.2	229
27	Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. Journal of Molecular Biology, 1998, 279, 773-793.	2.0	227
28	Recurrent structural RNA motifs, Isostericity Matrices and sequence alignments. Nucleic Acids Research, 2005, 33, 2395-2409.	6.5	210
29	Comparative genomics of protoploid <i>Saccharomycetaceae</i> . Genome Research, 2009, 19, 1696-1709.	2.4	207
30	An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Research, 2016, 44, 8020-8040.	6.5	203
31	RNA as a Drug Target: The Case of Aminoglycosides. ChemBioChem, 2003, 4, 1018-1023.	1.3	201
32	Aminoglycoside–RNA interactions. Current Opinion in Chemical Biology, 1999, 3, 694-704.	2.8	200
33	Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-â.,« resolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19748-19753.	3.3	196
34	Frequency and isostericity of RNA base pairs. Nucleic Acids Research, 2009, 37, 2294-2312.	6.5	190
35	Aminoglycoside binding to the hammerhead ribozyme: a general model for the interaction of cationic antibiotics with RNA 1 1Edited by J. Karn. Journal of Molecular Biology, 1998, 276, 903-912.	2.0	181
36	Crystal Structure of Geneticin Bound to a Bacterial 16S Ribosomal RNA A Site Oligonucleotide. Journal of Molecular Biology, 2003, 326, 1175-1188.	2.0	179

#	Article	IF	CITATIONS
37	Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nature Structural and Molecular Biology, 2006, 13, 1092-1096.	3.6	177
38	Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics, 2010, 26, 2057-2059.	1.8	176
39	A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. Journal of Molecular Biology, 1998, 283, 571-583.	2.0	175
40	RNA tectonics: towards RNA design. Folding & Design, 1996, 1, R78-R88.	4.5	166
41	RNA Structure: Advances and Assessment of 3D Structure Prediction. Annual Review of Biophysics, 2017, 46, 483-503.	4.5	166
42	<i>RNA-Puzzles</i> Round II: assessment of RNA structure prediction programs applied to three large RNA structures. Rna, 2015, 21, 1066-1084.	1.6	161
43	Correlation between the location of antigenic sites and the prediction of turns in proteins. Immunology Letters, 1993, 36, 83-99.	1.1	159
44	RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme. Rna, 2017, 23, 655-672.	1.6	158
45	Rules governing the orientation of the 2′-hydroxyl group in RNA. Journal of Molecular Biology, 1997, 274, 54-63.	2.0	155
46	RNA as a drug target: chemical, modelling, and evolutionary tools. Current Opinion in Biotechnology, 1998, 9, 66-73.	3.3	154
47	A three-dimensional model of hepatitis delta virus ribozyme based on biochemical and mutational analyses. Current Biology, 1994, 4, 488-498.	1.8	150
48	RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA Asp anticodon hairpin 1 1Edited by J. Karn. Journal of Molecular Biology, 1997, 269, 326-341.	2.0	148
49	Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5 S rRNAs. Journal of Molecular Biology, 1989, 207, 417-431.	2.0	144
50	Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: An analysis of x-ray crystal structures. Biopolymers, 2003, 70, 42-57.	1.2	142
51	Non-canonical interactions in a kissing loop complex: the dimerization initiation site of HIV-1 genomic RNA. Journal of Molecular Biology, 1997, 270, 36-49.	2.0	141
52	Statistical analysis of atomic contacts at RNA-protein interfaces. Journal of Molecular Recognition, 2001, 14, 199-214.	1.1	141
53	Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code. Nature Communications, 2016, 7, 10457.	5.8	141
54	New metrics for comparing and assessing discrepancies between RNA 3D structures and models. Rna, 2009, 15, 1875-1885.	1.6	138

#	Article	IF	CITATIONS
55	Visualization of macromolecular structures. Nature Methods, 2010, 7, S42-S55.	9.0	137
56	Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1574-1579.	3.3	136
57	Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease. Trends in Molecular Medicine, 2017, 23, 693-708.	3.5	132
58	Conserved geometrical base-pairing patterns in RNA. Quarterly Reviews of Biophysics, 1998, 31, 399-455.	2.4	130
59	The Molecular Basis for A-Site Mutations Conferring Aminoglycoside Resistance: Relationship between Ribosomal Susceptibility and X-ray Crystal Structures. ChemBioChem, 2003, 4, 1078-1088.	1.3	130
60	Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. Journal of Molecular Biology, 1985, 184, 455-471.	2.0	129
61	Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics, 2005, 21, 3320-3321.	1.8	127
62	iSpinach: a fluorogenic RNA aptamer optimized for <i>in vitro</i> applications. Nucleic Acids Research, 2016, 44, 2491-2500.	6.5	126
63	Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond–like features. Journal of Clinical Investigation, 2017, 127, 4090-4103.	3.9	126
64	Docking of Cationic Antibiotics to Negatively Charged Pockets in RNA Folds. Journal of Medicinal Chemistry, 1999, 42, 1250-1261.	2.9	124
65	Anion Binding to Nucleic Acids. Structure, 2004, 12, 379-388.	1.6	124
66	Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nature Communications, 2019, 10, 2519.	5.8	124
67	Localization of eukaryote-specific ribosomal proteins in a 5.5-â,,« cryo-EM map of the 80S eukaryotic ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19754-19759.	3.3	122
68	High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome. Nature, 2013, 494, 385-389.	13.7	122
69	Unusual helical packing in crystals of DNA bearing a mutation hot spot. Nature, 1989, 341, 459-462.	13.7	121
70	A pH-responsive riboregulator. Genes and Development, 2009, 23, 2650-2662.	2.7	119
71	Deciphering RNA recognition: aminoglycoside binding to the hammerhead ribozyme. Chemistry and Biology, 1998, 5, R277-R283.	6.2	117
72	Structural basis for the specificity of the initiation of HIV-1 reverse transcription. EMBO Journal, 1999, 18, 1038-1048.	3.5	116

#	Article	IF	CITATIONS
73	The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. Rna, 2021, 27, 253-264.	1.6	112
74	Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations. Structure, 1998, 6, 1303-1314.	1.6	110
75	A Tyrosyl-tRNA Synthetase Recognizes a Conserved tRNA-like Structural Motif in the Group I Intron Catalytic Core. Cell, 1996, 87, 1135-1145.	13.5	109
76	Singly and Bifurcated Hydrogen-bonded Base-pairs in tRNA Anticodon Hairpins and Ribozymes. Journal of Molecular Biology, 1999, 292, 467-483.	2.0	109
77	RNA folding: beyond Watson–Crick pairs. Structure, 2000, 8, R55-R65.	1.6	109
78	Effects of magnesium ions on the stabilization of RNA oligomers of defined structures. Rna, 2002, 8, 307-323.	1.6	109
79	Water and ion binding around r(UpA)12and d(TpA)12Oligomers - comparison with RNA and DNA (CpG)12 duplexes. Journal of Molecular Biology, 2001, 305, 1057-1072.	2.0	108
80	The 5S rRNA loop E: Chemical probing and phylogenetic data versus crystal structure. Rna, 1998, 4, 1134-1153.	1.6	107
81	On the wobble GoU and related pairs. Rna, 2000, 6, 9-15.	1.6	107
82	Monitoring of the Cooperative Unfolding of the sunY Group I Intron of Bacteriophage T4. Journal of Molecular Biology, 1993, 234, 331-346.	2.0	106
83	Molecular Modeling of the Three-dimensional Structure of the Bacterial RNase P Holoenzyme. Journal of Molecular Biology, 2003, 325, 661-675.	2.0	105
84	Structural insights into the translational infidelity mechanism. Nature Communications, 2015, 6, 7251.	5.8	100
85	RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two aptamers. Rna, 2020, 26, 982-995.	1.6	100
86	Binding of Escherichia coli ribosomal protein S8 to 16 S rRNA. Journal of Molecular Biology, 1987, 198, 91-107.	2.0	99
87	Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling. Journal of Molecular Biology, 1991, 221, 293-308.	2.0	96
88	Inter-domain cross-linking and molecular modelling of the hairpin ribozyme. Journal of Molecular Biology, 1997, 274, 197-212.	2.0	96
89	Unique secondary and tertiary structural features of the eucaryotic selenocysteine tRNASec. Nucleic Acids Research, 1993, 21, 1073-1079.	6.5	94
90	Non-Watson-Crick base pairs in RNA-protein recognition. Chemistry and Biology, 1999, 6, R335-R343.	6.2	94

#	Article	IF	CITATIONS
91	Symmetric K+ and Mg2+ Ion-binding Sites in the 5S rRNA Loop E Inferred from Molecular Dynamics Simulations. Journal of Molecular Biology, 2004, 335, 555-571.	2.0	93
92	Docking of Aminoglycosides to Hydrated and Flexible RNA. Journal of Medicinal Chemistry, 2006, 49, 1023-1033.	2.9	93
93	Molecular Dynamics Simulations of the Anticodon Hairpin of tRNAAsp: Structuring Effects of Câ^'H··Ô Hydrogen Bonds and of Long-Range Hydration Forces. Journal of the American Chemical Society, 1996, 118, 1181-1189.	6.6	91
94	RNAML: A standard syntax for exchanging RNA information. Rna, 2002, 8, 707-717.	1.6	91
95	The Mg2+ Binding Sites of the 5S rRNA Loop E Motif as Investigated by Molecular Dynamics Simulations. Chemistry and Biology, 2003, 10, 551-561.	6.2	91
96	A potential RNA drug target in the hepatitis C virus internal ribosomal entry site. Rna, 2000, 6, 1423-1431.	1.6	88
97	Antibacterial Aminoglycosides with a Modified Mode of Binding to the Ribosomal-RNA Decoding Site. Angewandte Chemie - International Edition, 2004, 43, 6735-6738.	7.2	88
98	Multiple Molecular Dynamics Simulations of the Anticodon Loop of tRNAAsp in Aqueous Solution with Counterions. Journal of the American Chemical Society, 1995, 117, 6720-6726.	6.6	87
99	The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Research, 2006, 34, 1816-1835.	6.5	86
100	In-line alignment and Mg2+ coordination at the cleavage site of the env22 twister ribozyme. Nature Communications, 2014, 5, 5534.	5.8	84
101	Dimerization of HIV-1 genomic RNA of subtypes A and B: RNA loop structure and magnesium binding. Rna, 1999, 5, 1222-1234.	1.6	83
102	A quantitative RNA code for mRNA target selection by the germline fate determinant GLD-1. EMBO Journal, 2011, 30, 533-545.	3.5	81
103	Sequence-based identification of 3D structural modules in RNA with RMDetect. Nature Methods, 2011, 8, 513-519.	9.0	80
104	Hydration of RNA Base Pairs. Journal of Biomolecular Structure and Dynamics, 1998, 16, 693-707.	2.0	78
105	Functional Hammerhead Ribozymes Naturally Encoded in the Genome of Arabidopsis thaliana Â. Plant Cell, 2005, 17, 1877-1885.	3.1	78
106	An extended structural signature for the tRNA anticodon loop. Rna, 2001, 7, 334-341.	1.6	76
107	A PNPase Dependent CRISPR System in Listeria. PLoS Genetics, 2014, 10, e1004065.	1.5	76
108	The ribozyme core of group II introns: a structure in want of partners. Trends in Biochemical Sciences, 2009, 34, 189-199.	3.7	74

#	Article	IF	CITATIONS
109	Solution structure of human U1 snRNA. Derivation of a possible three-dimensional model. Nucleic Acids Research, 1990, 18, 3803-3811.	6.5	73
110	Mapping in Three Dimensions of Regions in a Catalytic RNA Protected from Attack by an Fe(II)-EDTA Reagent. Journal of Molecular Biology, 1996, 258, 600-613.	2.0	73
111	Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes. Nucleic Acids Research, 2011, 39, 8628-8637.	6.5	71
112	An mRNA Is Capped by a 2', 5' Lariat Catalyzed by a Group I-Like Ribozyme. Science, 2005, 309, 1584-1587.	6.0	70
113	Molecular Dynamics Simulations of Solvated Yeast tRNAAsp. Biophysical Journal, 1999, 76, 50-64.	0.2	68
114	Crystal structure ofÂtheÂbacterial ribosomal decoding site complexed with amikacin containing theÂγ-amino-α-hydroxybutyryl (haba) group. Biochimie, 2006, 88, 1027-1031.	1.3	68
115	An unusual structure formed by antisense-target RNA binding involves an extended kissing complex with a four-way junction and a side-by-side helical alignment. Rna, 2000, 6, 311-324.	1.6	66
116	Molecular Contacts Between Antibiotics and the 30S Ribosomal Particle. Methods in Enzymology, 2006, 415, 180-202.	0.4	66
117	Analysis of the Contribution of Individual Substituents in 4,6-Aminoglycoside-Ribosome Interaction. Antimicrobial Agents and Chemotherapy, 2005, 49, 5112-5118.	1.4	64
118	New Structural Insights into Translational Miscoding. Trends in Biochemical Sciences, 2016, 41, 798-814.	3.7	64
119	Binding of Neomycin-Class Aminoglycoside Antibiotics to Mutant Ribosomes with Alterations in the A Site of 16S rRNA. Antimicrobial Agents and Chemotherapy, 2006, 50, 1489-1496.	1.4	63
120	Crystal structure and fluorescence properties of the iSpinach aptamer in complex with DFHBI. Rna, 2017, 23, 1788-1795.	1.6	63
121	Dimerization confers increased stability to nucleases in 5′ halves from glycine and glutamic acid tRNAs. Nucleic Acids Research, 2018, 46, 9081-9093.	6.5	63
122	Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage. Rna, 2013, 19, 257-270.	1.6	62
123	A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs. PLoS Computational Biology, 2015, 11, e1004639.	1.5	62
124	Using droplet-based microfluidics to improve the catalytic properties of RNA under multiple-turnover conditions. Rna, 2015, 21, 458-469.	1.6	62
125	Importance of Conserved Residues for the Conformation of the T-Loop in tRNAs. Journal of Biomolecular Structure and Dynamics, 1987, 5, 669-687.	2.0	60
126	The RNA Ontology Consortium: An open invitation to the RNA community. Rna, 2006, 12, 533-541.	1.6	59

#	Article	IF	CITATIONS
127	The ribosome prohibits the C•U wobble geometry at the first position of the codon–anticodon helix. Nucleic Acids Research, 2016, 44, gkw431.	6.5	59
128	Mutation in a primate-conserved retrotransposon reveals a noncoding RNA as a mediator of infantile encephalopathy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4980-4985.	3.3	58
129	Hydrophobic Groups Stabilize the Hydration Shell of 2′-O-Methylated RNA Duplexes. Angewandte Chemie - International Edition, 2001, 40, 4648-4650.	7.2	57
130	Somatic Mutation in Human T-Cell Leukemia Virus Type 1 Provirus and Flanking Cellular Sequences During Clonal Expansion In Vivo. Journal of the National Cancer Institute, 2001, 93, 367-377.	3.0	57
131	Binding of manganese(II) to a tertiary stabilized hammerhead ribozyme as studied by electron paramagnetic resonance spectroscopy. Rna, 2005, 11, 1-6.	1.6	57
132	Structure of a Folding Intermediate Reveals the Interplay Between Core and Peripheral Elements in RNA Folding. Journal of Molecular Biology, 2005, 352, 712-722.	2.0	57
133	RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core. EMBO Journal, 2013, 32, 2804-2818.	3.5	57
134	The complete genome of Blastobotrys (Arxula) adeninivorans LS3 - a yeast of biotechnological interest. Biotechnology for Biofuels, 2014, 7, 66.	6.2	57
135	Function of P11, a tertiary base pairing in self-splicing introns of subgroup IA. Journal of Molecular Biology, 1991, 221, 1153-1164.	2.0	56
136	Architecture and folding mechanism of the Azoarcus Group I Pre-tRNA. Journal of Molecular Biology, 2004, 339, 41-51.	2.0	56
137	Differential Selectivity of Natural and Synthetic Aminoglycosides towards the Eukaryotic and Prokaryotic Decoding A Sites. ChemBioChem, 2007, 8, 1700-1709.	1.3	56
138	Advances in RNA 3D Structure Modeling Using Experimental Data. Frontiers in Genetics, 2020, 11, 574485.	1.1	56
139	Structure-Based Design, Synthesis, and A-Site rRNA Cocrystal Complexes of Functionally Novel Aminoglycoside Antibiotics: C2â€~Ââ€~ Ether Analogues of Paromomycin. Journal of Medicinal Chemistry, 2007, 50, 2352-2369.	2.9	54
140	Isostericity and tautomerism of base pairs in nucleic acids. FEBS Letters, 2014, 588, 2464-2469.	1.3	53
141	An Interactive Framework for RNA Secondary Structure Prediction with a Dynamical Treatment of Constraints. Journal of Molecular Biology, 1995, 254, 163-174.	2.0	52
142	Ribose Conformations in the Common Purine(ß)ribosides, in Some Antibiotic Nucleosides, and in Some Isopropylidene Derivatives: A Comparison. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1975, 30, 131-140.	0.6	51
143	Determination of thermodynamic parameters for HIV DIS type loop-loop kissing complexes. Nucleic Acids Research, 2004, 32, 5126-5133.	6.5	50
144	New structural insights into the decoding mechanism: Translation infidelity via a G·U pair with Watson–Crick geometry. FEBS Letters, 2013, 587, 1848-1857.	1.3	50

#	Article	IF	CITATIONS
145	Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score. Nucleic Acids Research, 2015, 43, 5340-5351.	6.5	50
146	Protein-dependent transition states for ribonucleoprotein assembly. Journal of Molecular Biology, 2001, 309, 1087-1100.	2.0	49
147	Pronouced instability of tandem IU base pairs in RNA. Nucleic Acids Research, 2004, 32, 1824-1828.	6.5	49
148	Distinctive structures between chimpanzee and humanin a brain noncoding RNA. Rna, 2008, 14, 1270-1275.	1.6	49
149	Architecture of a Diels-Alderase Ribozyme with a Preformed Catalytic Pocket. Chemistry and Biology, 2004, 11, 1217-1227.	6.2	48
150	Proximity of conserved U6 and U2 snRNA elements to the 5′ splice site region in activated spliceosomes. EMBO Journal, 2006, 25, 2475-2486.	3.5	48
151	Binding of tobramycin leads to conformational changes in yeast tRNAAsp and inhibition of aminoacylation. EMBO Journal, 2002, 21, 760-768.	3.5	47
152	Speciation of a group I intron into a lariat capping ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7659-7664.	3.3	47
153	Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism. F1000prime Reports, 2014, 6, 19.	5.9	47
154	Hydration of transfer RNA molecules: a crystallographic study. Biochimie, 1988, 70, 145-165.	1.3	46
155	Structure-Activity Relationships among the Kanamycin Aminoglycosides: Role of Ring I Hydroxyl and Amino Groups. Antimicrobial Agents and Chemotherapy, 2012, 56, 6104-6108.	1.4	46
156	2,6-Diaminopurine as a highly potent corrector of UGA nonsense mutations. Nature Communications, 2020, 11, 1509.	5.8	46
157	Rational Drug Design and High-Throughput Techniques for RNA Targets. Combinatorial Chemistry and High Throughput Screening, 2000, 3, 219-234.	0.6	46
158	The bacterial and mitochondrial ribosomal A-site molecular switches possess different conformational substates. Nucleic Acids Research, 2008, 36, 2654-2666.	6.5	45
159	Crystal structures of a group II intron lariat primed for reverse splicing. Science, 2016, 354, .	6.0	45
160	The 9/4 secondary structure of eukaryotic selenocysteine tRNA: More pieces of evidence. Rna, 1998, 4, 1029-1033.	1.6	44
161	RNA-Puzzles toolkit: a computational resource of RNA 3D structure benchmark datasets, structure manipulation, and evaluation tools. Nucleic Acids Research, 2020, 48, 576-588.	6.5	44
162	The three-dimensional architecture of the class I ligase ribozyme. Rna, 2004, 10, 176-184.	1.6	43

#	Article	IF	CITATIONS
163	Involvement of "hinge―nucleotides of Xenopus laevis 5 S rRNA in the RNA structural organization and in the binding of transcription factor TFIIIA. Journal of Molecular Biology, 1991, 218, 69-81.	2.0	41
164	Molecular mimicry in translational control ofE.colithreonyl-tRNA synthetase gene. Competitive inhibition in tRNA aminoacylation and operator-repressor recognition switch using tRNA identity rules. Nucleic Acids Research, 1992, 20, 5633-5640.	6.5	41
165	Monitoring intermediate folding states of the td group I intron in vivo. EMBO Journal, 2002, 21, 5281-5291.	3.5	41
166	Structure-based design, synthesis and A-site rRNA co-crystal complexes of novel amphiphilic aminoglycoside antibiotics with new binding modes: A synergistic hydrophobic effect against resistant bacteria. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7097-7101.	1.0	40
167	Group I-like ribozymes with a novel core organization perform obligate sequential hydrolytic cleavages at two processing sites. Rna, 1998, 4, 530-541.	1.6	39
168	Simulations of the dynamics at an RNA-protein interface. , 1999, 6, 540-544.		39
169	RNA structure: bioinformatic analysis. Current Opinion in Microbiology, 2007, 10, 279-285.	2.3	39
170	Toward predicting self-splicing and protein-facilitated splicing of group I introns. Rna, 2008, 14, 2013-2029.	1.6	38
171	The Annotation of RNA Motifs. Comparative and Functional Genomics, 2002, 3, 518-524.	2.0	35
172	Predicting and Modeling RNA Architecture. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003632-a003632.	2.3	35
173	Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families. Nucleic Acids Research, 2018, 46, 3841-3851.	6.5	35
174	[29] Modeling RNA tertiary structure from patterns of sequence variation. Methods in Enzymology, 2000, 317, 491-510.	0.4	34
175	The RNA structure alignment ontology. Rna, 2009, 15, 1623-1631.	1.6	34
176	Four-way Junctions in Antisense RNA-mRNA Complexes Involved in Plasmid Replication Control: A Common Theme?. Journal of Molecular Biology, 2001, 309, 605-614.	2.0	33
177	Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions. Nature Communications, 2018, 9, 4865.	5.8	33
178	Brownian-dynamics simulations of metal-ion binding to four-way junctions. Nucleic Acids Research, 2002, 30, 507-514.	6.5	32
179	Melting of the solvent structure around a RNA duplex: a molecular dynamics simulation study. Biophysical Chemistry, 2002, 95, 203-210.	1.5	32
180	The RNA structurome: high-throughput probing. Nature Methods, 2010, 7, 965-967.	9.0	32

#	Article	IF	CITATIONS
181	Base Pairing Constraints Drive Structural Epistasis in Ribosomal RNA Sequences. Molecular Biology and Evolution, 2010, 27, 1868-1876.	3.5	32
182	Inhibition of Aminoglycosideâ€Deactivating Enzymes APH(3′)â€IIIa and AAC(6′)â€Ii by Amphiphilic Paromor O2′′â€Ether Analogues. ChemMedChem, 2011, 6, 1961-1966.	nycin 1.6	32
183	A Dynamic Correlation between Ribose Conformation and Glycosyl Torsion Angle of Dissolved Xanthosine Studied by Continuous-Wave-Mode and Pulsed Nuclear-Magnetic-Resonance Methods. FEBS Journal, 1974, 49, 143-150.	0.2	31
184	Kinetic analysis of the reactivation of rabbit muscle aldolase after denaturation with guanidine·HCl. FEBS Letters, 1977, 73, 204-206.	1.3	30
185	A sulfate pocket formed by three GoU pairs in the 0.97 â,,« resolution X-ray structure of a nonameric RNA. Rna, 1999, 5, 1384-1395.	1.6	30
186	The modular structure of Escherichia coli threonyl-tRNA synthetase as both an enzyme and a regulator of gene expression. Molecular Microbiology, 2003, 47, 961-974.	1.2	30
187	The multiple flavors of GoU pairs in RNA. Journal of Molecular Recognition, 2019, 32, e2782.	1.1	30
188	Electron Spin Resonance of Free Radicals and Radical Pairs in Irradiated Single Crystal of 1-Methyluracil. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1973, 28, 523-532.	0.6	29
189	Role of conserved nucleotides in building the 16S rRNA binding site ofE.coliribosomal protein S8. Nucleic Acids Research, 1994, 22, 3708-3714.	6.5	29
190	Riboswitch Structures: Purine Ligands Replace Tertiary Contacts. Chemistry and Biology, 2005, 12, 10-13.	6.2	29
191	Tautomeric G•U pairs within the molecular ribosomal grip and fidelity of decoding in bacteria. Nucleic Acids Research, 2018, 46, 7425-7435.	6.5	29
192	Molecular modelling of the GIR1 branching ribozyme gives new insight into evolution of structurally related ribozymes. EMBO Journal, 2008, 27, 667-678.	3.5	28
193	Temperature-dependent molecular dynamics and restrained X-ray refinement simulations of a Z-DNA hexamer. Journal of Molecular Biology, 1986, 191, 699-712.	2.0	27
194	Evaluation of uranyl photocleavage as a probe to monitor ion binding and flexibility in RNAs 1 1Edited by M. Yaniv. Journal of Molecular Biology, 2000, 300, 339-352.	2.0	27
195	A surprisingly large RNase P RNA in Candida glabrata. Rna, 2005, 11, 1064-1072.	1.6	27
196	Twenty years of RNA crystallography. Rna, 2015, 21, 486-487.	1.6	27
197	Analysis of the cooperative thermal unfolding of the td intron of bacteriophage T4. Nucleic Acids Research, 1999, 27, 2494-2502.	6.5	26
198	RBscore&NBench: a high-level web server for nucleic acid binding residues prediction with a large-scale benchmarking database. Nucleic Acids Research, 2016, 44, W562-W567.	6.5	26

#	Article	IF	CITATIONS
199	Mutant <scp>MRPS</scp> 5 affects mitoribosomal accuracy and confers stressâ€related behavioral alterations. EMBO Reports, 2018, 19, .	2.0	26
200	INDO analysis of the imidazole anion and hydrogen addition radicals. Journal of the American Chemical Society, 1975, 97, 6622-6623.	6.6	25
201	Effect of mutations in domain 2 on the structural organization of oocyte 5 S rRNA from Xenopus laevis. Journal of Molecular Biology, 1990, 215, 103-111.	2.0	25
202	Influence of specific mutations on the thermal stability of the td group I intron in vitro and on its splicing efficiency in vivo: A comparative study. Rna, 1999, 5, 947-958.	1.6	25
203	Comparative patterns of modified nucleotides in individual tRNA species from a mesophilic and two thermophilic archaea. Rna, 2020, 26, 1957-1975.	1.6	24
204	The initiation accuracy of the SV40 early transcription is determined by the functional domains of two TATA elements. Nucleic Acids Research, 1992, 20, 975-982.	6.5	23
205	Modified nucleotides of tRNA Pro restrict interactions in the binary Primer/Template complex of M-MuLV 1 1Edited by J. Karn. Journal of Molecular Biology, 1998, 275, 731-746.	2.0	23
206	MAO: a Multiple Alignment Ontology for nucleic acid and protein sequences. Nucleic Acids Research, 2005, 33, 4164-4171.	6.5	23
207	The RNA Ontology (RNAO): An ontology for integrating RNA sequence and structure data. Applied Ontology, 2011, 6, 53-89.	1.0	23
208	Structural studies on site-directed mutants of domain 3 of Xenopus laevis oocyte 5 S ribosomal RNA. Journal of Molecular Biology, 1991, 219, 243-255.	2.0	22
209	Effects of Vaccine Strain Mutations in Domain V of the Internal Ribosome Entry Segment Compared in the Wild Type Poliovirus Type 1 Context. Journal of Biological Chemistry, 2004, 279, 10261-10269.	1.6	22
210	A tale in molecular recognition: the hammerhead ribozyme. Journal of Molecular Recognition, 2007, 20, 1-3.	1.1	22
211	The amazing world of bacterial structured RNAs. Genome Biology, 2010, 11, 108.	13.9	22
212	Loop-loop interactions involved in antisense regulation are processed by the endoribonuclease III in <i>Staphylococcus aureus </i> . RNA Biology, 2012, 9, 1461-1472.	1.5	22
213	A novel double kink-turn module in euryarchaeal RNase P RNAs. Nucleic Acids Research, 2017, 45, 7432-7440.	6.5	22
214	E.S.R. and INDO study of radicals produced in irradiated single crystals of histidine hydrochloride monohydrate at low temperature. Molecular Physics, 1974, 28, 151-160.	0.8	21
215	Westhof's rule. Nature, 1992, 358, 459-460.	13.7	21
216	ESR and INDO study of radical conformations in irradiated single crystals of Lâ€histidine free base. Journal of Chemical Physics, 1974, 61, 3376-3381.	1.2	19

#	Article	IF	CITATIONS
217	Mapping post-transcriptional modifications in Staphylococcus aureus tRNAs by nanoLC/MSMS. Biochimie, 2019, 164, 60-69.	1.3	19
218	Solution Conformational Analysis of 2'-Amino-2'-Deoxyadenosine, 3'-Amino-3'-Deoxyadenosine and Puromycin by Pulsed Nuclear-Magnetic-Resonance Methods. FEBS Journal, 1977, 80, 295-304.	0.2	18
219	Studies on Anticodon-anticodon Interactions: Hemi-protonation of Cytosines Induces Self-pairing Through the GCC Anticodon ofE. ColitRNA-Cly. Journal of Biomolecular Structure and Dynamics, 1986, 4, 193-203.	2.0	18
220	STRUCTURAL BIOLOGY: Evolution of RNA Architecture. Science, 2004, 306, 62-63.	6.0	17
221	Automated prediction of three-way junction topological families in RNA secondary structures. Computational Biology and Chemistry, 2012, 37, 1-5.	1.1	17
222	Self-assembled RNA nanostructures. Science, 2014, 345, 732-733.	6.0	17
223	The nature of the purine at position 34 in tRNAs of 4-codon boxes is correlated with nucleotides at positions 32 and 38 to maintain decoding fidelity. Nucleic Acids Research, 2020, 48, 6170-6183.	6.5	17
224	An RNA-centric historical narrative around the Protein Data Bank. Journal of Biological Chemistry, 2021, 296, 100555.	1.6	17
225	RNA modeling, naturally. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2691-2692.	3.3	16
226	Specific features of telomerase RNA from Hansenula polymorpha. Rna, 2013, 19, 1563-1574.	1.6	16
227	Context dependent RNA-RNA recognition in a three-dimensional model of the 16S rRNA core. Bioorganic and Medicinal Chemistry, 1997, 5, 1021-1035.	1.4	15
228	Atomic Glimpses on a Billion-Year-Old Molecular Machine. Angewandte Chemie - International Edition, 2000, 39, 1587-1591.	7.2	15
229	Correlated sequence signatures are present within the genomic 5′UTR RNA and NSP1 protein in coronaviruses. Rna, 2022, 28, 729-741.	1.6	15
230	How to fold and protect mitochondrial ribosomal RNA with fewer guanines. Nucleic Acids Research, 2018, 46, 10946-10968.	6.5	14
231	Pseudouridines or how to draw on weak energy differences. Biochemical and Biophysical Research Communications, 2019, 520, 702-704.	1.0	13
232	Evaluation of the stereochemical quality of predicted RNA 3D models in the RNA-Puzzles submissions. Rna, 2022, 28, 250-262.	1.6	12
233	Transfer RNA Identity Rules and Conformation of the Tyrosine tRNA-like Domain of BMV RNA Imply Additional Charging by Histidine and Valine. Biochemical and Biophysical Research Communications, 1998, 243, 426-434.	1.0	11
234	From RNAi to Epigenomes: How RNA Rules The World. ChemBioChem, 2005, 6, 441-443.	1.3	9

#	Article	IF	CITATIONS
235	Molecular Adaptation in RNA Complexes. Structure, 2009, 17, 784-786.	1.6	9
236	Identification and annotation of noncoding RNAs in Saccharomycotina. Comptes Rendus - Biologies, 2011, 334, 671-678.	0.1	9
237	A structural module in RNase P expands the variety of RNA kinks. RNA Biology, 2012, 9, 254-260.	1.5	9
238	Bacterial translation machinery for deliberate mistranslation of the genetic code. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
239	Structure of an A-form RNA duplex obtained by degradation of 6S RNA in a crystallization droplet. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 634-639.	0.7	8
240	Leadzyme RNA catalysis. , 1999, 6, 208-209.		7
241	RNase P: At last, the key finds its lock. Rna, 2011, 17, 1615-1618.	1.6	7
242	Visualization of energetics and conformations from molecular computer simulations. Journal of Molecular Graphics, 1986, 4, 203-207.	1.7	6
243	Unusual tertiary pairs in eukaryotic tRNAAla. Rna, 2020, 26, 1519-1529.	1.6	6
244	Eukaryotic tRNA sequences present conserved and amino acid-specific structural signatures. Nucleic Acids Research, 2022, 50, 4100-4112.	6.5	6
245	Usefulness of functional and structural solution data for the modeling of tRNA-like structures. Pharmaceutica Acta Helvetiae, 1996, 71, 3-9.	1.2	5
246	The ribosomal decoding site andÂantibiotics. Biochimie, 2006, 88, 931-933.	1.3	5
247	Introduction. Methods in Molecular Biology, 2012, 848, 1-4.	0.4	4
248	Toward atomic accuracy in RNA design. Nature Methods, 2010, 7, 272-273.	9.0	3
249	New Dimensions of RNA in Molecular Recognition and Catalysis. Accounts of Chemical Research, 2011, 44, 1255-1256.	7.6	3
250	The Endless Subtleties of RNA-Protein Complexes. Structure, 2011, 19, 902-903.	1.6	3
251	INDO study of bent radical anions. Chemical Physics Letters, 1975, 32, 338-340.	1.2	2
252	How to Silence Silencing. Chemistry and Biology, 2004, 11, 158-160.	6.2	2

#	Article	IF	CITATIONS
253	Perspectives and Pitfalls in Nucleic Acids Crystallography. Methods in Molecular Biology, 2016, 1320, 3-8.	0.4	2
254	Muttaiya Sundaralingam (1931-2004): A Pioneering Stereochemist and Crystallographer of Nucleic Acids. Structure, 2005, 13, 343-345.	1.6	1
255	RNA structure from deep sequencing. Nature Biotechnology, 2015, 33, 928-929.	9.4	1
256	Neocles B. Leontis (1955–2020). Rna, 2021, 27, vii-viii.	1.6	1
257	Comparative study on tertiary contacts and folding of RNase P RNAs from a psychrophilic, a mesophilic/radiation-resistant, and a thermophilic bacterium. Rna, 2021, 27, 1204-1219.	1.6	1
258	Web Site: How to fold RNA. Angewandte Chemie - International Edition, 2001, 40, 1139-1139.	7.2	0
259	Inside Cover: Inhibition of Aminoglycoside-Deactivating Enzymes APH(3′)-IIIa and AAC(6′)-Ii by Amphiphilic Paromomycin O2′′-Ether Analogues (ChemMedChem 11/2011). ChemMedChem, 2011, 6, 1942-1942.	1.6	0
260	RNA Structure and Folding, edited by Dagmar Klostermeier and Christian Hammann. 2013. De Gruyter, Berlin/Boston Rna, 2014, 20, 1843-1843.	1.6	0
261	Editorial overview: Protein nucleic acid interactions: order, ambiguities and disorder in recognition and complex formation between proteins and nucleic acids. Current Opinion in Structural Biology, 2018, 53, vi-viii.	2.6	0
262	High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome. journal of hand surgery Asian-Pacific volume, The, 2018, , 456-462.	0.2	0