
Chihaya Adachi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/534973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492, 234-238.	13.7	6,030
2	Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics, 2001, 90, 5048-5051.	1.1	3,189
3	Highly Phosphorescent Bis-Cyclometalated Iridium Complexes:  Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. Journal of the American Chemical Society, 2001, 123, 4304-4312.	6.6	2,639
4	Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics, 2014, 8, 326-332.	15.6	2,064
5	Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes. Journal of the American Chemical Society, 2012, 134, 14706-14709.	6.6	1,370
6	Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nature Photonics, 2012, 6, 253-258.	15.6	1,355
7	Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B, 2000, 62, 10967-10977.	1.1	1,276
8	Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nature Materials, 2015, 14, 330-336.	13.3	1,129
9	Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters, 2001, 79, 2082-2084.	1.5	1,029
10	High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials. Applied Physics Letters, 2000, 77, 904-906.	1.5	1,023
11	Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Applied Physics Letters, 2011, 98, .	1.5	936
12	High-efficiency organic light-emitting diodes with fluorescent emitters. Nature Communications, 2014, 5, 4016.	5.8	869
13	Thermally Activated Delayed Fluorescence from Sn ⁴⁺ –Porphyrin Complexes and Their Application to Organic Light Emitting Diodes — A Novel Mechanism for Electroluminescence. Advanced Materials, 2009, 21, 4802-4806.	11.1	825
14	Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Molecular Design, Thermally Activated Delayed Fluorescence, and Highly Efficient Red Electroluminescence. Journal of the American Chemical Society, 2014, 136, 18070-18081.	6.6	822
15	Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nature Communications, 2015, 6, 8476.	5.8	799
16	Organic long persistent luminescence. Nature, 2017, 550, 384-387.	13.7	788
17	High-efficiency red electrophosphorescence devices. Applied Physics Letters, 2001, 78, 1622-1624.	1.5	682
18	Blue lightâ€emitting organic electroluminescent devices. Applied Physics Letters, 1990, 56, 799-801.	1.5	679

#	Article	IF	CITATIONS
19	100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films. Applied Physics Letters, 2005, 86, 071104.	1.5	673
20	Efficient Persistent Room Temperature Phosphorescence in Organic Amorphous Materials under Ambient Conditions. Advanced Functional Materials, 2013, 23, 3386-3397.	7.8	643
21	Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine–triphenyltriazine (PXZ–TRZ) derivative. Chemical Communications, 2012, 48, 11392.	2.2	573
22	Organic electroluminescent device having a hole conductor as an emitting layer. Applied Physics Letters, 1989, 55, 1489-1491.	1.5	564
23	Enhanced Electroluminescence Efficiency in a Spiroâ€Acridine Derivative through Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2012, 51, 11311-11315.	7.2	495
24	Nearly 100% Internal Quantum Efficiency in Undoped Electroluminescent Devices Employing Pure Organic Emitters. Advanced Materials, 2015, 27, 2096-2100.	11.1	495
25	High efficiency single dopant white electrophosphorescent light emitting diodesElectronic supplementary information (ESI) available: emission spectra as a function of doping concentration for 3 in CBP, as well as the absorption and emission spectra of Irppz, CBP and mCP. See http://www.rsc.org/suppdata/ni/b2/b204301g/. New Journal of Chemistry. 2002, 26, 1171-1178.	1.4	486
26	Luminous Butterflies: Efficient Exciton Harvesting by Benzophenone Derivatives for Full olor Delayed Fluorescence OLEDs. Angewandte Chemie - International Edition, 2014, 53, 6402-6406.	7.2	473
27	Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Organic Electronics, 2013, 14, 2721-2726.	1.4	455
28	Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nature Photonics, 2021, 15, 203-207.	15.6	449
29	Third-generation organic electroluminescence materials. Japanese Journal of Applied Physics, 2014, 53, 060101.	0.8	437
30	Highly Efficient Organic Lightâ€Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative. Advanced Materials, 2013, 25, 3319-3323.	11.1	436
31	High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nature Photonics, 2018, 12, 98-104.	15.6	421
32	Afterglow Organic Lightâ€Emitting Diode. Advanced Materials, 2016, 28, 655-660.	11.1	417
33	Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Applied Physics Letters, 1995, 66, 2679-2681.	1.5	411
34	Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor–acceptor structure. Chemical Communications, 2012, 48, 9580.	2.2	409
35	Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host. Journal of Applied Physics, 2000, 87, 8049-8055.	1.1	408
36	Confinement of charge carriers and molecular excitons within 5â€nmâ€thick emitter layer in organic electroluminescent devices with a double heterostructure. Applied Physics Letters, 1990, 57, 531-533.	1.5	396

#	Article	IF	CITATIONS
37	Electroluminescence in Organic Films with Three-Layer Structure. Japanese Journal of Applied Physics, 1988, 27, L269-L271.	0.8	390
38	Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585, 53-57.	13.7	384
39	Controlling Singlet–Triplet Energy Splitting for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie - International Edition, 2017, 56, 1571-1575.	7.2	380
40	Intermolecular Interaction and a Concentration-Quenching Mechanism of Phosphorescent Ir(III) Complexes in a Solid Film. Physical Review Letters, 2006, 96, 017404.	2.9	339
41	Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nature Photonics, 2020, 14, 636-642.	15.6	331
42	Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants. Scientific Reports, 2013, 3, 3344.	1.6	320
43	Electroluminescence of 1,3,4-Oxadiazole and Triphenylamine-Containing Molecules as an Emitter in Organic Multilayer Light Emitting Diodes. Chemistry of Materials, 1997, 9, 1077-1085.	3.2	316
44	Nanoparticles of Adaptive Supramolecular Networks Self-Assembled from Nucleotides and Lanthanide Ions. Journal of the American Chemical Society, 2009, 131, 2151-2158.	6.6	314
45	Computational Prediction for Singlet- and Triplet-Transition Energies of Charge-Transfer Compounds. Journal of Chemical Theory and Computation, 2013, 9, 3872-3877.	2.3	312
46	High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules. Applied Physics Letters, 2012, 101, 093306.	1.5	311
47	Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence. Scientific Reports, 2013, 3, 2127.	1.6	305
48	Oxadiazole- and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 4599.	2.7	304
49	High efficiency pure blue thermally activated delayed fluorescence molecules having 10H-phenoxaborin and acridan units. Chemical Communications, 2015, 51, 9443-9446.	2.2	299
50	Twisted Intramolecular Charge Transfer State for Long-Wavelength Thermally Activated Delayed Fluorescence. Chemistry of Materials, 2013, 25, 3766-3771.	3.2	297
51	Excited state engineering for efficient reverse intersystem crossing. Science Advances, 2018, 4, eaao6910.	4.7	294
52	Controlling Singlet–Triplet Energy Splitting for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie, 2017, 129, 1593-1597.	1.6	287
53	Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nature Communications, 2020, 11, 1765.	5.8	287
54	Triplet exciton confinement and unconfinement by adjacent hole-transport layers. Journal of Applied Physics, 2004, 95, 7798-7802.	1.1	285

#	Article	IF	CITATIONS
55	Triarylboronâ€Based Fluorescent Organic Lightâ€Emitting Diodes with External Quantum Efficiencies Exceeding 20 %. Angewandte Chemie - International Edition, 2015, 54, 15231-15235.	7.2	285
56	Triplet Exciton Confinement in Green Organic Lightâ€Emitting Diodes Containing Luminescent Chargeâ€Transfer Cu(I) Complexes. Advanced Functional Materials, 2012, 22, 2327-2336.	7.8	279
57	Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors. Nature Materials, 2019, 18, 1084-1090.	13.3	271
58	Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states. Science Advances, 2017, 3, e1603282.	4.7	263
59	Dual Intramolecular Charge-Transfer Fluorescence Derived from a Phenothiazine-Triphenyltriazine Derivative. Journal of Physical Chemistry C, 2014, 118, 15985-15994.	1.5	261
60	Organic Electroluminescent Device with a Three-Layer Structure. Japanese Journal of Applied Physics, 1988, 27, L713-L715.	0.8	259
61	High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2014, 2, 421-424.	2.7	259
62	Detrimental Effect of Unreacted Pbl ₂ on the Longâ€Term Stability of Perovskite Solar Cells. Advanced Materials, 2020, 32, e1905035.	11.1	256
63	Blue-Light-Emitting Organic Electroluminescent Devices with Oxadiazole Dimer Dyes as an Emitter. Japanese Journal of Applied Physics, 1992, 31, 1812-1816.	0.8	255
64	Thermally Activated Delayed Fluorescence Polymers for Efficient Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 4019-4024.	11.1	251
65	Versatile Molecular Functionalization for Inhibiting Concentration Quenching of Thermally Activated Delayed Fluorescence. Advanced Materials, 2017, 29, 1604856.	11.1	251
66	1,8-Naphthalimides in Phosphorescent Organic LEDs:Â The Interplay between Dopant, Exciplex, and Host Emission. Journal of the American Chemical Society, 2002, 124, 9945-9954.	6.6	248
67	Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angewandte Chemie - International Edition, 2019, 58, 14660-14665.	7.2	247
68	Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes. Applied Physics Letters, 2012, 101, .	1.5	239
69	Solutionâ€Processed Organic–Inorganic Perovskite Fieldâ€Effect Transistors with High Hole Mobilities. Advanced Materials, 2016, 28, 10275-10281.	11.1	237
70	Highâ€Efficiency White Organic Lightâ€Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescent Emitter Combined with Green and Red Fluorescent Emitters. Advanced Materials, 2015, 27, 2019-2023.	11.1	236
71	Fullâ€Color Delayed Fluorescence Materials Based on Wedgeâ€Shaped Phthalonitriles and Dicyanopyrazines: Systematic Design, Tunable Photophysical Properties, and OLED Performance. Advanced Functional Materials, 2016, 26, 1813-1821.	7.8	236
72	Simple Accurate System for Measuring Absolute Photoluminescence Quantum Efficiency in Organic Solid-State Thin Films. Japanese Journal of Applied Physics, 2004, 43, 7729-7730.	0.8	233

#	Article	IF	CITATIONS
73	Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Scientific Reports, 2015, 5, 8429.	1.6	227
74	High-Efficiency Organic Electrophosphorescent Diodes Using 1,3,5-Triazine Electron Transport Materials. Chemistry of Materials, 2004, 16, 1285-1291.	3.2	216
75	High Current Density in Light-Emitting Transistors of Organic Single Crystals. Physical Review Letters, 2008, 100, 066601.	2.9	216
76	A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures. Advanced Materials, 2017, 29, 1702767.	11.1	215
77	Horizontal orientation of linear-shaped organic molecules having bulky substituents in neat and doped vacuum-deposited amorphous films. Organic Electronics, 2009, 10, 127-137.	1.4	213
78	Longâ€Lived Roomâ€Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIFâ€8. Advanced Optical Materials, 2016, 4, 1015-1021.	3.6	209
79	Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes. Journal of Applied Physics, 1999, 86, 1680-1687.	1.1	202
80	Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters. Organic Electronics, 2011, 12, 809-817.	1.4	201
81	High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluorescence. Applied Physics Letters, 2001, 79, 1045-1047.	1.5	199
82	Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Applied Physics Letters, 2010, 96, .	1.5	199
83	A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence. Chemical Communications, 2013, 49, 10385-10387.	2.2	198
84	Organic Luminescent Molecule with Energetically Equivalent Singlet and Triplet Excited States for Organic Light-Emitting Diodes. Physical Review Letters, 2013, 110, 247401.	2.9	198
85	Indication of current-injection lasing from an organic semiconductor. Applied Physics Express, 2019, 12, 061010.	1.1	198
86	Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition. Applied Physics Letters, 2003, 83, 1252-1254.	1.5	196
87	Rational Molecular Design for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Advanced Functional Materials, 2018, 28, 1706023.	7.8	195
88	Triplet management for efficient perovskite light-emitting diodes. Nature Photonics, 2020, 14, 70-75.	15.6	190
89	Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film. Organic Electronics, 2001, 2, 37-43.	1.4	189
90	Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells. Applied Physics Letters, 2007, 90, 103515.	1.5	187

#	Article	IF	CITATIONS
91	Highâ€Efficiency Blue Organic Lightâ€Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives. Advanced Materials, 2016, 28, 4626-4631.	11.1	179
92	Solvent Effect on Thermally Activated Delayed Fluorescence by 1,2,3,5-Tetrakis(carbazol-9-yl)-4,6-dicyanobenzene. Journal of Physical Chemistry A, 2013, 117, 5607-5612.	1.1	173
93	Thermally Activated Delayed Fluorescence Carbonyl Derivatives for Organic Light-Emitting Diodes with Extremely Narrow Full Width at Half-Maximum. ACS Applied Materials & Interfaces, 2019, 11, 13472-13480.	4.0	165
94	Controlling Synergistic Oxidation Processes for Efficient and Stable Blue Thermally Activated Delayed Fluorescence Devices. Advanced Materials, 2016, 28, 7620-7625.	11.1	160
95	Efficiency Enhancement of Organic Lightâ€Emitting Diodes Incorporating a Highly Oriented Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2014, 24, 5232-5239.	7.8	159
96	Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts. Nature Communications, 2017, 8, 2250.	5.8	159
97	Influence of host matrix on thermally-activated delayed fluorescence: Effects on emission lifetime, photoluminescence quantum yield, and device performance. Organic Electronics, 2014, 15, 2027-2037.	1.4	158
98	High-efficiency transparent organic light-emitting devices. Applied Physics Letters, 2000, 76, 2128-2130.	1.5	153
99	Orientation Control of Linearâ€Shaped Molecules in Vacuumâ€Deposited Organic Amorphous Films and Its Effect on Carrier Mobilities. Advanced Functional Materials, 2010, 20, 386-391.	7.8	151
100	A six-carbazole-decorated cyclophosphazene as a host with high triplet energy to realize efficient delayed-fluorescence OLEDs. Materials Horizons, 2014, 1, 264-269.	6.4	150
101	Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System. ACS Central Science, 2017, 3, 769-777.	5.3	148
102	Controlled emission colors and singlet–triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2015, 3, 2175-2181.	2.7	147
103	Molecular Stacking Induced by Intermolecular C–H···N Hydrogen Bonds Leading to High Carrier Mobility in Vacuumâ€Deposited Organic Films. Advanced Functional Materials, 2011, 21, 1375-1382.	7.8	144
104	Horizontal molecular orientation in vacuum-deposited organic amorphous films of hole and electron transport materials. Applied Physics Letters, 2008, 93, .	1.5	143
105	Highly efficient exciplex organic light-emitting diodes incorporating a heptazine derivative as an electron acceptor. Chemical Communications, 2014, 50, 6174-6176.	2.2	141
106	Measurement of photoluminescence efficiency of Ir(III) phenylpyridine derivatives in solution and solid-state films. Chemical Physics Letters, 2008, 460, 155-157.	1.2	138
107	Effect of Molecular Morphology on Amplified Spontaneous Emission of Bisâ€Styrylbenzene Derivatives. Advanced Materials, 2009, 21, 4034-4038.	11.1	138
108	Strategy for Designing Electron Donors for Thermally Activated Delayed Fluorescence Emitters. Journal of Physical Chemistry C, 2015, 119, 1291-1297.	1.5	137

#	Article	IF	CITATIONS
109	High performance from extraordinarily thick organic light-emitting diodes. Nature, 2019, 572, 502-506.	13.7	136
110	Multifunctional Benzoquinone Additive for Efficient and Stable Planar Perovskite Solar Cells. Advanced Materials, 2017, 29, 1603808.	11.1	135
111	Turn on of sky-blue thermally activated delayed fluorescence and circularly polarized luminescence (CPL) <i>via</i> increased torsion by a bulky carbazolophane donor. Chemical Science, 2019, 10, 6689-6696.	3.7	135
112	Electrogenerated Chemiluminescence of Donor–Acceptor Molecules with Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2014, 53, 6993-6996.	7.2	132
113	Toward continuous-wave operation of organic semiconductor lasers. Science Advances, 2017, 3, e1602570.	4.7	132
114	Combined Inter―and Intramolecular Chargeâ€Transfer Processes for Highly Efficient Fluorescent Organic Lightâ€Emitting Diodes with Reduced Triplet Exciton Quenching. Advanced Materials, 2017, 29, 1606448.	11.1	131
115	Highly Efficient Nearâ€Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angewandte Chemie - International Edition, 2021, 60, 8477-8482.	7.2	130
116	100% fluorescence efficiency of 4,4[sup ʹ]-bis[(N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold. Applied Physics Letters, 2005, 86, 071110.	1.5	128
117	Organic Longâ€Persistent Luminescence from a Flexible and Transparent Doped Polymer. Advanced Materials, 2018, 30, e1803713.	11.1	128
118	Doped organic light emitting diodes having a 650-nm-thick hole transport layer. Applied Physics Letters, 1998, 72, 2147-2149.	1.5	127
119	Self-Organizing Mesomorphic Diketopyrrolopyrrole Derivatives for Efficient Solution-Processed Organic Solar Cells. Chemistry of Materials, 2013, 25, 2549-2556.	3.2	126
120	Large reverse saturable absorption under weak continuous incoherent light. Nature Materials, 2014, 13, 938-946.	13.3	126
121	Extremely Lowâ€Threshold Amplified Spontaneous Emission of 9,9′â€Spirobifluorene Derivatives and Electroluminescence from Fieldâ€Effect Transistor Structure. Advanced Functional Materials, 2007, 17, 2328-2335.	7.8	124
122	Benzimidazobenzothiazoleâ€Based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2016, 55, 6864-6868.	7.2	123
123	Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging. ACS Applied Materials & Interfaces, 2015, 7, 26266-26274.	4.0	122
124	Lateral organic light-emitting diode with field-effect transistor characteristics. Journal of Applied Physics, 2005, 98, 074506.	1.1	121
125	Evaluating Carrier Accumulation in Degraded Bulk Heterojunction Organic Solar Cells by a Thermally Stimulated Current Technique. Advanced Functional Materials, 2009, 19, 3934-3940.	7.8	121
126	Near-Infrared Electroluminescence and Low Threshold Amplified Spontaneous Emission above 800 nm from a Thermally Activated Delayed Fluorescent Emitter. Chemistry of Materials, 2018, 30, 6702-6710.	3.2	119

#	Article	IF	CITATIONS
127	A dicarbazole–triazine hybrid bipolar host material for highly efficient green phosphorescent OLEDs. Journal of Materials Chemistry, 2012, 22, 3832.	6.7	116
128	High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence. Applied Physics Letters, 2014, 104, 233304.	1.5	116
129	Highly Efficient Blue Electroluminescence Using Delayed-Fluorescence Emitters with Large Overlap Density between Luminescent and Ground States. Journal of Physical Chemistry C, 2015, 119, 26283-26289.	1.5	116
130	Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole–triazine derivative. Physical Chemistry Chemical Physics, 2013, 15, 15850.	1.3	115
131	Influence of energy gap between charge-transfer and locally excited states on organic long persistence luminescence. Nature Communications, 2020, 11, 191.	5.8	115
132	Methylammonium Lead Bromide Perovskite Light-Emitting Diodes by Chemical Vapor Deposition. Journal of Physical Chemistry Letters, 2017, 8, 3193-3198.	2.1	113
133	Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4. Nature Communications, 2018, 9, 5036.	5.8	113
134	Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes. Nature Communications, 2019, 10, 5283.	5.8	111
135	Degradation Mechanisms of Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Molecules. Journal of Physical Chemistry C, 2015, 119, 23845-23851.	1.5	110
136	Donor–Ïf–Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion. Angewandte Chemie - International Edition, 2017, 56, 16536-16540.	7.2	109
137	The Role of Reverse Intersystem Crossing Using a TADFâ€Type Acceptor Molecule on the Device Stability of Exciplexâ€Based Organic Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1906614.	11.1	109
138	Degradation Mechanisms of Solutionâ€Processed Planar Perovskite Solar Cells: Thermally Stimulated Current Measurement for Analysis of Carrier Traps. Advanced Materials, 2016, 28, 466-471.	11.1	107
139	Confinement of Longâ€Lived Triplet Excitons in Organic Semiconducting Host–Guest Systems. Advanced Functional Materials, 2017, 27, 1703902.	7.8	107
140	Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers. Scientific Reports, 2016, 6, 22463.	1.6	104
141	Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers. Science Advances, 2016, 2, e1501470.	4.7	104
142	Selectively Controlled Orientational Order in Linear-Shaped Thermally Activated Delayed Fluorescent Dopants. Chemistry of Materials, 2014, 26, 3665-3671.	3.2	103
143	Thermally-activated Delayed Fluorescence for Light-emitting Devices. Chemistry Letters, 2021, 50, 938-948.	0.7	103
144	Nature of the singlet and triplet excitations mediating thermally activated delayed fluorescence. Physical Review Materials, 2017, 1, .	0.9	102

#	Article	IF	CITATIONS
145	Reversible Thermal Recording Media Using Timeâ€Dependent Persistent Room Temperature Phosphorescence. Advanced Optical Materials, 2013, 1, 438-442.	3.6	101
146	Improvement of Electroluminescence Performance of Organic Lightâ€Emitting Diodes with a Liquidâ€Emitting Layer by Introduction of Electrolyte and a Holeâ€Blocking Layer. Advanced Materials, 2011, 23, 889-893.	11.1	100
147	Increased vis-to-UV upconversion performance by energy level matching between a TADF donor and high triplet energy acceptors. Journal of Materials Chemistry C, 2016, 4, 6447-6451.	2.7	100
148	Exploiting Singlet Fission in Organic Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1801484.	11.1	100
149	Wideâ€Range Tuning and Enhancement of Organic Longâ€Persistent Luminescence Using Emitter Dopants. Advanced Materials, 2018, 30, e1800365.	11.1	99
150	Effect of solvent on fabrication of active layers in organic solar cells based on poly(3-hexylthiophene) and fullerene derivatives. Solar Energy Materials and Solar Cells, 2009, 93, 514-518.	3.0	98
151	Fabrication of high coverage MASnI ₃ perovskite films for stable, planar heterojunction solar cells. Journal of Materials Chemistry C, 2017, 5, 1121-1127.	2.7	98
152	Improved thermoelectric performance of organic thin-film elements utilizing a bilayer structure of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ). Applied Physics Letters, 2010, 96, .	1.5	97
153	Enhanced figure of merit of a porous thin film of bismuth antimony telluride. Applied Physics Letters, 2011, 98, .	1.5	97
154	Low driving voltage characteristics of triphenylene derivatives as electron transport materials in organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 20689.	6.7	97
155	Effect of reverse intersystem crossing rate to suppress efficiency roll-off in organic light-emitting diodes with thermally activated delayed fluorescence emitters. Chemical Physics Letters, 2016, 644, 62-67.	1.2	96
156	Formation of Europium Chelate Complexes by Vacuum Co-Deposition and Their Application in Organic Light-Emitting Diodes. Advanced Materials, 2004, 16, 1082-1086.	11.1	93
157	Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density. Applied Physics Letters, 2005, 86, 213506.	1.5	92
158	Efficient luminescence from a copper(i) complex doped in organic light-emitting diodes by suppressing C–H vibrational quenching. Chemical Communications, 2012, 48, 5340.	2.2	92
159	Bifunctional Starâ€Burst Amorphous Molecular Materials for OLEDs: Achieving Highly Efficient Solidâ€State Luminescence and Carrier Transport Induced by Spontaneous Molecular Orientation. Advanced Materials, 2013, 25, 2666-2671.	11.1	92
160	Small molecular organic photovoltaic cells with exciton blocking layer at anode interface for improved device performance. Applied Physics Letters, 2011, 99, .	1.5	91
161	Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer. Communications Materials, 2020, 1, .	2.9	91
162	Organic long-persistent luminescence stimulated by visible light in p-type systems based on organic photoredox catalyst dopants. Nature Materials, 2022, 21, 338-344.	13.3	91

#	Article	IF	CITATIONS
163	Blue organic light-emitting diodes realizing external quantum efficiency over 25% using thermally activated delayed fluorescence emitters. Scientific Reports, 2017, 7, 284.	1.6	88
164	Intramolecularâ€Locked High Efficiency Ultrapure Violetâ€Blue (CIEâ€y <0.046) Thermally Activated Delayed Fluorescence Emitters Exhibiting Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2009488.	7.8	88
165	Zinc complexes exhibiting highly efficient thermally activated delayed fluorescence and their application to organic light-emitting diodes. Chemical Communications, 2015, 51, 3181-3184.	2.2	86
166	Boron difluoride hemicurcuminoid as an efficient far red to near-infrared emitter: toward OLEDs and laser dyes. Chemical Communications, 2017, 53, 7003-7006.	2.2	86
167	Organic Longâ€Persistent Luminescence from a Thermally Activated Delayed Fluorescence Compound. Advanced Materials, 2020, 32, e2003911.	11.1	86
168	Extremely low voltage organic light-emitting diodes with p-doped alpha-sexithiophene hole transport and n-doped phenyldipyrenylphosphine oxide electron transport layers. Applied Physics Letters, 2006, 89, 253506.	1.5	84
169	Suppression of Efficiency Roll-Off Characteristics in Thermally Activated Delayed Fluorescence Based Organic Light-Emitting Diodes Using Randomly Oriented Host Molecules. Chemistry of Materials, 2013, 25, 3038-3047.	3.2	84
170	Light Amplification in Molecules Exhibiting Thermally Activated Delayed Fluorescence. Advanced Optical Materials, 2017, 5, 1700051.	3.6	84
171	Thermoelectric properties of <i>n-</i> type C60 thin films and their application in organic thermovoltaic devices. Applied Physics Letters, 2011, 99, .	1.5	83
172	The Importance of Excitedâ€State Energy Alignment for Efficient Exciplex Systems Based on a Study of Phenylpyridinato Boron Derivatives. Angewandte Chemie - International Edition, 2018, 57, 12380-12384.	7.2	83
173	Steric Modulation of Spiro Structure for Highly Efficient Multiple Resonance Emitters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	83
174	Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer. Applied Physics Letters, 2005, 86, 033503.	1.5	81
175	Organic light-emitting diode with liquid emitting layer. Applied Physics Letters, 2009, 95, .	1.5	81
176	pâ€iâ€n Homojunction in Organic Lightâ€Emitting Transistors. Advanced Materials, 2011, 23, 2753-2758.	11.1	81
177	Enhanced Electroluminescence from a Thermally Activated Delayed-Fluorescence Emitter by Suppressing Nonradiative Decay. Physical Review Applied, 2015, 3, .	1.5	81
178	Color Tuning of Avobenzone Boron Difluoride as an Emitter to Achieve Full olor Emission. Advanced Functional Materials, 2016, 26, 6703-6710.	7.8	81
179	Extremely-high-density carrier injection and transport over 12000Aâ^•cm2 into organic thin films. Applied Physics Letters, 2005, 86, 083502.	1.5	79
180	Highly balanced ambipolar mobilities with intense electroluminescence in field-effect transistors based on organic single crystal oligo(p-phenylenevinylene) derivatives. Applied Physics Letters, 2009, 95, 033308.	1.5	78

#	Article	IF	CITATIONS
181	Emission Color Tuning in Ambipolar Organic Singleâ€Crystal Fieldâ€Effect Transistors by Dyeâ€Doping. Advanced Functional Materials, 2010, 20, 1610-1615.	7.8	77
182	Uniform Aerosol Jet printed polymer lines with 30î¼m width for 140ppi resolution RGB organic light emitting diodes. Organic Electronics, 2015, 22, 40-43.	1.4	77
183	Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Applied Physics Letters, 2004, 84, 1401-1403.	1.5	76
184	A solution-processable host material of 1,3-bis{3-[3-(9-carbazolyl)phenyl]-9-carbazolyl}benzene and its application in organic light-emitting diodes employing thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2015, 3, 1700-1706.	2.7	76
185	Highly efficient electroluminescence from a solution-processable thermally activated delayed fluorescence emitter. Applied Physics Letters, 2015, 107, .	1.5	75
186	Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules. Applied Physics Letters, 1999, 75, 766-768.	1.5	73
187	High efficiency thermally activated delayed fluorescence based on 1,3,5-tris(4-(diphenylamino)phenyl)-2,4,6-tricyanobenzene. Chemical Communications, 2015, 51, 5028-5031.	2.2	73
188	Electroluminescence from completely horizontally oriented dye molecules. Applied Physics Letters, 2016, 108, .	1.5	73
189	Thermally activated delayed fluorescence from 3n <i>Ï€</i> * to 1n <i>Ï€</i> * up-conversion and its application to organic light-emitting diodes. Applied Physics Letters, 2014, 105, .	1.5	72
190	Centrifugal-Coated Quasi-Two-Dimensional Perovskite CsPb ₂ Br ₅ Films for Efficient and Stable Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 5415-5421.	2.1	71
191	Analyzing Bipolar Carrier Transport Characteristics of Diarylamino-Substituted Heterocyclic Compounds in Organic Light-Emitting Diodes by Probing Electroluminescence Spectra. Chemistry of Materials, 2008, 20, 4439-4446.	3.2	69
192	[2,2′]Bi[naphtho[2,3-b]furanyl]: a versatile organic semiconductor with a furan–furan junction. Chemical Communications, 2012, 48, 5892.	2.2	69
193	<i>N</i> -channel field-effect transistors with an organic-inorganic layered perovskite semiconductor. Applied Physics Letters, 2016, 109, .	1.5	68
194	Organic nanostructures of thermally activated delayed fluorescent emitters with enhanced intersystem crossing as novel metal-free photosensitizers. Chemical Communications, 2016, 52, 11744-11747.	2.2	68
195	Intramolecular Noncovalent Interactions Facilitate Thermally Activated Delayed Fluorescence (TADF). Journal of Physical Chemistry Letters, 2019, 10, 3260-3268.	2.1	68
196	Ion Migration-Induced Degradation and Efficiency Roll-off in Quasi-2D Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 33004-33013.	4.0	68
197	Donor–acceptor-structured 1,4-diazatriphenylene derivatives exhibiting thermally activated delayed fluorescence: design and synthesis, photophysical properties and OLED characteristics. Science and Technology of Advanced Materials, 2014, 15, 034202.	2.8	67
198	Through Space Charge Transfer for Efficient Skyâ€Blue Thermally Activated Delayed Fluorescence (TADF) Emitter with Unconjugated Connection. Advanced Optical Materials, 2020, 8, 1901150.	3.6	67

#	Article	IF	CITATIONS
199	Tetrabenzo[<i>a</i> , <i>c</i>]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angewandte Chemie - International Edition, 2021, 60, 19364-19373.	7.2	67
200	Highly efficient bulk heterojunction photovoltaic cells based on C70 and tetraphenyldibenzoperiflanthene. Applied Physics Letters, 2013, 102, 143304.	1.5	66
201	Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoimprinted gratings. Optics Express, 2011, 19, A7.	1.7	65
202	Light-emitting organic field-effect transistors based on highly luminescent single crystals of thiophene/phenylene co-oligomers. Journal of Materials Chemistry C, 2014, 2, 4918.	2.7	65
203	X-shaped benzoylbenzophenone derivatives with crossed donors and acceptors for highly efficient thermally activated delayed fluorescence. Dalton Transactions, 2015, 44, 8356-8359.	1.6	64
204	Near-infrared organic light-emitting diodes for biosensing with high operating stability. Applied Physics Express, 2017, 10, 074101.	1.1	64
205	Many Exciplex Systems Exhibit Organic Longâ€Persistent Luminescence. Advanced Functional Materials, 2020, 30, 2000795.	7.8	64
206	Thermally Activated Delayed Fluorescence from a Spiro-diazafluorene Derivative. Chemistry Letters, 2014, 43, 1017-1019.	0.7	62
207	Electroluminescence of organic light emitting diodes with a thick hole transport layer composed of a triphenylamine based polymer doped with an antimonium compound. Journal of Applied Physics, 1999, 86, 4369-4376.	1.1	61
208	Tuning of threshold voltage by interfacial carrier doping in organic single crystal ambipolar light-emitting transistors and their bright electroluminescence. Applied Physics Letters, 2009, 95, .	1.5	61
209	Novel liquid-crystalline and amorphous materials containing oxadiazole and amine moieties for electroluminescent devices. Chemical Communications, 2000, , 1923-1924.	2.2	60
210	Electroluminescence of 2,4-bis(4-(2′-thiophene-yl)phenyl)thiophene in organic light-emitting field-effect transistors. Applied Physics Letters, 2005, 86, 093505.	1.5	60
211	Blue-Light-Emitting Ambipolar Field-Effect Transistors Using an Organic Single Crystal of 1,4-Bis(4-methylstyryl)benzene. Applied Physics Express, 0, 1, 091801.	1.1	60
212	Exciplex Formations between Tris(8-hydoxyquinolate)aluminum and Hole Transport Materials and Their Photoluminescence and Electroluminescence Characteristics. Journal of Physical Chemistry C, 2008, 112, 7735-7741.	1.5	60
213	Enhancement of electron transport by horizontal molecular orientation of oxadiazole planar molecules in organic amorphous films. Applied Physics Letters, 2009, 95, .	1.5	60
214	High performance organic field-effect transistors based on single-crystal microribbons and microsheets of solution-processed dithieno[3,2-b:2′,3′-d]thiophene derivatives. Chemical Communications, 2013, 49, 6483.	2.2	60
215	Multi-color microfluidic organic light-emitting diodes based on on-demand emitting layers of pyrene-based liquid organic semiconductors with fluorescent guest dopants. Sensors and Actuators B: Chemical, 2015, 207, 481-489.	4.0	60
216	A Phenazaborin-Based High-Efficiency Blue Delayed Fluorescence Material. Bulletin of the Chemical Society of Japan, 2016, 89, 375-377.	2.0	60

#	Article	IF	CITATIONS
217	Unusual Phosphorescence Characteristics of Ir(ppy)3in a Solid Matrix at Low Temperatures. Japanese Journal of Applied Physics, 2004, 43, L937-L939.	0.8	58
218	Organic molecules based on dithienyl-2,1,3-benzothiadiazole as new donor materials for solution-processed organic photovoltaic cells. Solar Energy Materials and Solar Cells, 2010, 94, 2230-2237.	3.0	58
219	Dicarbazolyldicyanobenzenes as Thermally Activated Delayed Fluorescence Emitters: Effect of Substitution Position on Photoluminescent and Electroluminescent Properties. Chemistry Letters, 2014, 43, 319-321.	0.7	58
220	Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers. Journal of Applied Physics, 2008, 103, .	1.1	57
221	<i>In situ</i> real-time spectroscopic ellipsometry measurement for the investigation of molecular orientation in organic amorphous multilayer structures. Journal of Applied Physics, 2010, 107, .	1.1	57
222	Highly Efficient Thermally Activated Delayed Fluorescence Emitters with a Small Singlet–Triplet Energy Gap and Large Oscillator Strength. Chemistry Letters, 2015, 44, 360-362.	0.7	57
223	Architectures for efficient electrophosphorescent organic light-emitting devices. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 372-377.	1.9	56
224	Estimation of electron traps in carbon-60 field-effect transistors by a thermally stimulated current technique. Applied Physics Letters, 2007, 91, .	1.5	56
225	A host material consisting of a phosphinic amide directly linked donor–acceptor structure for efficient blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 2404.	2.7	56
226	Self-Assembly of Electron Donor–Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both One- and Two-Photon Cellular Imaging. ACS Applied Materials & Interfaces, 2016, 8, 11355-11365.	4.0	56
227	Synthesis and Photophysical Characteristics of 2,7-Fluorenevinylene-Based Trimers and Their Electroluminescence. Journal of Physical Chemistry B, 2006, 110, 20317-20326.	1.2	55
228	Fabrication and performance evaluation of microfluidic organic light emitting diode. Sensors and Actuators A: Physical, 2013, 195, 219-223.	2.0	55
229	Thermally activated delayed fluorescence with 7% external quantum efficiency from a light-emitting electrochemical cell. Nature Communications, 2019, 10, 5307.	5.8	55
230	Distributed Feedback Lasers and Light-Emitting Diodes Using 1-Naphthylmethylamnonium Low-Dimensional Perovskite. ACS Photonics, 2019, 6, 460-466.	3.2	55
231	Investigating HOMO Energy Levels of Terminal Emitters for Realizing Highâ€Brightness and Stable TADFâ€Assisted Fluorescence Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2021, 7, 2001090.	2.6	55
232	Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical Physics Letters, 1991, 178, 488-490.	1.2	54
233	A Novel Class of Photo- and Electroactive Polymers Containing Oxadiazole and Amine Moieties in a Side Chain. Macromolecules, 2003, 36, 3457-3464.	2.2	54
234	Highly efficient and stable red phosphorescent organic light-emitting device using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material. Applied Physics Letters, 2007, 90, 123509.	1.5	54

#	Article	IF	CITATIONS
235	Processing and doping of thick polymer active layers for flexible organic thermoelectric modules. Organic Electronics, 2016, 31, 31-40.	1.4	54
236	Efficient Electron Injection Mechanism in Organic Light-Emitting Diodes Using an Ultra Thin Layer of Low-Work-Function Metals. Japanese Journal of Applied Physics, 2003, 42, L1535-L1538.	0.8	53
237	Material design of hole transport materials capable of thick-film formation in organic light emitting diodes. Applied Physics Letters, 2007, 90, 183503.	1.5	53
238	Understanding the Degradation of Spiroâ€OMeTADâ€Based Perovskite Solar Cells at High Temperature. Solar Rrl, 2020, 4, 2000305.	3.1	53
239	Injection and Transport of High Current Density over 1000 A/cm2in Organic Light Emitting Diodes under Pulse Excitation. Japanese Journal of Applied Physics, 2005, 44, 3659-3662.	0.8	52
240	Ambipolar light-emitting organic field-effect transistors using a wide-band-gap blue-emitting small molecule. Applied Physics Letters, 2007, 90, 171118.	1.5	52
241	Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers. Journal of Applied Physics, 2010, 108, .	1.1	52
242	Optical Properties of Oligo(9,9-diarylfluorene) Derivatives in Thin Films and Their Application for Organic Light-Emitting Field-Effect Transistors. Journal of Physical Chemistry C, 2007, 111, 108-115.	1.5	51
243	Organic light-emitting diodes containing multilayers of organic single crystals. Applied Physics Letters, 2010, 96, .	1.5	51
244	Effect of Atom Substitution in Chalcogenodiazole-Containing Thermally Activated Delayed Fluorescence Emitters on Radiationless Transition. Journal of Physical Chemistry C, 2015, 119, 2948-2955.	1.5	51
245	A light-emitting mechanism for organic light-emitting diodes: molecular design for inverted singlet–triplet structure and symmetry-controlled thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2015, 3, 870-878.	2.7	51
246	Phosphorescent Cu(<scp>i</scp>) complexes based on bis(pyrazol-1-yl-methyl)-pyridine derivatives for organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 138-146.	2.7	51
247	Organic light emitting diodes with horizontally oriented thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2017, 5, 1216-1223.	2.7	51
248	Nearâ€Infrared Electrophosphorescence up to 1.1 µm using a Thermally Activated Delayed Fluorescence Molecule as Triplet Sensitizer. Advanced Materials, 2017, 29, 1604265.	11.1	51
249	Hydrogen bond-modulated molecular packing and its applications in high-performance non-doped organic electroluminescence. Materials Horizons, 2020, 7, 2734-2740.	6.4	51
250	Efficient Deep-Blue Organic Light-Emitting Diodes Based on 9,9-Bis(4-biphenylyl)fluorene Derivatives. Journal of Physical Chemistry C, 2009, 113, 6261-6266.	1.5	50
251	Reduced initial degradation of bulk heterojunction organic solar cells by incorporation of stacked fullerene and lithium fluoride interlayers. Applied Physics Letters, 2010, 96, 053307.	1.5	50
252	Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Applied Physics Letters, 2015, 106, .	1.5	50

Chihaya Adachi

#	Article	IF	CITATIONS
253	Quasiâ€Continuousâ€Wave Organic Thinâ€Film Distributed Feedback Laser. Advanced Optical Materials, 2016, 4, 834-839.	3.6	50
254	Observation of spontaneous orientation polarization in evaporated films of organic light-emitting diode materials. Organic Electronics, 2018, 58, 313-317.	1.4	50
255	Electrical characteristics of single-component ambipolar organic field-effect transistors and effects of air exposure on them. Journal of Applied Physics, 2008, 103, .	1.1	49
256	Formation of Organic Crystalline Nanopillar Arrays and Their Application to Organic Photovoltaic Cells. ACS Applied Materials & amp; Interfaces, 2011, 3, 80-83.	4.0	49
257	Solution-processed organic thermoelectric materials exhibiting doping-concentration-dependent polarity. Physical Chemistry Chemical Physics, 2016, 18, 29199-29207.	1.3	49
258	Temperature dependence of photoluminescence properties in a thermally activated delayed fluorescence emitter. Applied Physics Letters, 2014, 104, .	1.5	48
259	Low Amplified Spontaneous Emission Threshold from Organic Dyes Based on Bisâ€stilbene. Advanced Functional Materials, 2018, 28, 1802130.	7.8	48
260	The Leap from Organic Light-Emitting Diodes to Organic Semiconductor Laser Diodes. CCS Chemistry, 2020, 2, 1203-1216.	4.6	48
261	Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films. Journal of Applied Physics, 2008, 103, .	1.1	47
262	Ï€ â€Extended Narrowâ€Bandgap Diketopyrrolopyrroleâ€Based Oligomers for Solutionâ€Processed Inverted Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400879.	10.2	47
263	Light Amplification in an Organic Solid‣tate Film with the Aid of Tripletâ€ŧo‣inglet Upconversion. Advanced Optical Materials, 2015, 3, 1381-1388.	3.6	47
264	Low Amplified Spontaneous Emission Threshold and Efficient Electroluminescence from a Carbazole Derivatized Excited-State Intramolecular Proton Transfer Dye. ACS Photonics, 2018, 5, 4447-4455.	3.2	47
265	Design Strategy for Robust Organic Semiconductor Laser Dyes. , 2020, 2, 161-167.		47
266	Enhancing spin-orbital coupling in deep-blue/blue TADF emitters by minimizing the distance from the heteroatoms in donors to acceptors. Chemical Engineering Journal, 2021, 420, 127591.	6.6	47
267	Exact Solution of Kinetic Analysis for Thermally Activated Delayed Fluorescence Materials. Journal of Physical Chemistry A, 2021, 125, 8074-8089.	1.1	47
268	Horizontal Orientation of Disk-like Hole Transport Molecules and Their Application for Organic Light-Emitting Diodes Requiring a Lower Driving Voltage. Journal of Physical Chemistry C, 2012, 116, 8699-8706.	1.5	46
269	Diffusion Enhancement in Highly Excited MAPbI ₃ Perovskite Layers with Additives. Journal of Physical Chemistry Letters, 2018, 9, 3167-3172.	2.1	46
270	Suppression of external quantum efficiency rolloff in organic light emitting diodes by scavenging triplet excitons. Nature Communications, 2020, 11, 4926.	5.8	46

#	Article	IF	CITATIONS
271	High Field-Effect Mobility in an Organic Thin-Film Transistor with a Solid-State Polymerized Polydiacetylene Film as an Active Layer. Advanced Materials, 2006, 18, 3120-3124.	11.1	45
272	Highly efficient electroluminescence from purely organic donor–acceptor systems. Pure and Applied Chemistry, 2015, 87, 627-638.	0.9	45
273	Photophysical Properties and Efficient, Stable, Electrogenerated Chemiluminescence of Donor–Acceptor Molecules Exhibiting Thermal Spin Upconversion. Chemistry - A European Journal, 2016, 22, 4889-4898.	1.7	45
274	Contributions of a Higher Triplet Excited State to the Emission Properties of a Thermally Activated Delayed-Fluorescence Emitter. Physical Review Applied, 2017, 7, .	1.5	45
275	Suppression of Structural Change upon S ₁ –T ₁ Conversion Assists the Thermally Activated Delayed Fluorescence Process in Carbazole-Benzonitrile Derivatives. Journal of Physical Chemistry Letters, 2019, 10, 2475-2480.	2.1	45
276	Exciton–Exciton Annihilation in Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2020, 30, 2000580.	7.8	45
277	Longâ€Persistent Luminescence from an Exciplexâ€Based Organic Lightâ€Emitting Diode. Advanced Materials, 2021, 33, e2008844.	11.1	45
278	Mini-Review on Efficiency and Stability of Perovskite Solar Cells with Spiro-OMeTAD Hole Transport Layer: Recent Progress and Perspectives. Energy & Fuels, 2021, 35, 18915-18927.	2.5	45
279	Trifluoromethane modification of thermally activated delayed fluorescence molecules for high-efficiency blue organic light-emitting diodes. Chemical Communications, 2018, 54, 8261-8264.	2.2	44
280	Effect of confined radiation field on spontaneous-emission lifetime in vacuum-deposited fluorescent dye films. Chemical Physics Letters, 1991, 182, 143-146.	1.2	43
281	Charge carrier dynamics and degradation phenomena in organic light-emitting diodes doped by a thermally activated delayed fluorescence emitter. Organic Electronics, 2015, 17, 184-191.	1.4	43
282	<title>Progress in organic multilayer electroluminescent devices</title> ., 1993, , .		42
283	Ambipolar field-effect transistor based on organic-inorganic hybrid structure. Applied Physics Letters, 2007, 90, 262104.	1.5	42
284	Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites. Physical Chemistry Chemical Physics, 2018, 20, 15030-15036.	1.3	42
285	Effect of Carrier Balance on Device Degradation of Organic Lightâ€Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitters. Advanced Electronic Materials, 2019, 5, 1800708.	2.6	42
286	Probing polaron-induced exciton quenching in TADF based organic light-emitting diodes. Nature Communications, 2022, 13, 254.	5.8	42
287	Spectrally narrow emission from organic films under continuous-wave excitation. Applied Physics Letters, 2007, 90, 231109.	1.5	41
288	Stoichiometry Control for the Tuning of Grain Passivation and Domain Distribution in Green Quasiâ€2D Metal Halide Perovskite Films and Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 2001816.	7.8	41

Chihaya Adachi

#	Article	IF	CITATIONS
289	Managing Intersegmental Chargeâ€Transfer and Multiple Resonance Alignments of D ₃ â€A Typed TADF Emitters for Red OLEDs with Improved Efficiency and Color Purity. Advanced Optical Materials, 2022, 10, 2101789.	3.6	41
290	Ultraviolet amplified spontaneous emission from thin films of 4,4′-bis(9-carbazolyl)-2,2′-biphenyl and the derivatives. Applied Physics Letters, 2004, 84, 2724-2726.	1.5	40
291	Organometallic Complexes as Hole-Transporting Materials in Organic Light-Emitting Diodes. Inorganic Chemistry, 2004, 43, 1697-1707.	1.9	40
292	Phenanthrene-functionalized 3,6-dithiophen-2-yl-2,5- dihydropyrrolo[3,4–c]pyrrole-1,4-diones as donor molecules for solution-processed organic photovoltaic cells. Solar Energy Materials and Solar Cells, 2011, 95, 2516-2523.	3.0	40
293	Highly luminescent π-conjugated dithienometalloles: photophysical properties and their application in organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 16810.	6.7	40
294	Extremely low amplified spontaneous emission threshold and blue electroluminescence from a spin-coated octafluorene neat film. Applied Physics Letters, 2017, 110, 023303.	1.5	40
295	Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angewandte Chemie, 2019, 131, 14802-14807.	1.6	40
296	Excellent Semiconductors Based on Tetracenotetracene and Pentacenopentacene: From Stable Closed-Shell to Singlet Open-Shell. Journal of the American Chemical Society, 2019, 141, 9373-9381.	6.6	40
297	Unusual photoluminescence characteristics of tetraphenylpyrene (TPPy) in various aggregated morphologies. Chemical Physics Letters, 2006, 421, 295-299.	1.2	39
298	Carrier injection and transport characteristics of copper phthalocyanine thin films under low to extremely high current densities. Applied Physics Letters, 2006, 88, 033508.	1.5	39
299	Low threshold amplified spontaneous emission and ambipolar charge transport in non-volatile liquid fluorene derivatives. Chemical Communications, 2016, 52, 3103-3106.	2.2	39
300	Achieving a Carbon Neutral Future through Advanced Functional Materials and Technologies. Bulletin of the Chemical Society of Japan, 2022, 95, 73-103.	2.0	39
301	Top Light-Harvesting Organic Solar Cell Using Ultrathin Ag/MgAg Layer as Anode. Japanese Journal of Applied Physics, 2007, 46, 1734-1735.	0.8	38
302	Photophysical and photosensitizing properties of brominated porphycenes. Chemical Communications, 2008, , 2882.	2.2	38
303	Blue emitting fluorophores of phenyleneethynylenes substituted by diphenylethenyl terminal groups for organic light-emitting diodes. Materials Chemistry and Physics, 2009, 115, 378-384.	2.0	38
304	Dependence of the Amplified Spontaneous Emission Threshold in Spirofluorene Thin Films on Molecular Orientation. Journal of Physical Chemistry C, 2011, 115, 19890-19896.	1.5	38
305	Liquid Carbazole Substituted with a Poly(ethylene oxide) Group and Its Application for Liquid Organic Light-emitting Diodes. Chemistry Letters, 2012, 41, 934-936.	0.7	38
306	Multi-color microfluidic electrochemiluminescence cells. Sensors and Actuators A: Physical, 2014, 214, 225-229.	2.0	38

#	Article	IF	CITATIONS
307	Enhanced Electrical Properties and Air Stability of Amorphous Organic Thin Films by Engineering Film Density. Journal of Physical Chemistry Letters, 2017, 8, 5891-5897.	2.1	38
308	Slow recombination of spontaneously dissociated organic fluorophore excitons. Nature Communications, 2019, 10, 5748.	5.8	38
309	Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars. Applied Physics Letters, 2016, 108, .	1.5	37
310	Improvement of the quasi-continuous-wave lasing properties in organic semiconductor lasers using oxygen as triplet quencher. Applied Physics Letters, 2016, 108, .	1.5	37
311	Influence of vacuum chamber impurities on the lifetime of organic light-emitting diodes. Scientific Reports, 2016, 6, 38482.	1.6	37
312	Theoretical predication for transition energies of thermally activated delayed fluorescence molecules. Chinese Chemical Letters, 2016, 27, 1445-1452.	4.8	37
313	Different orientation of the transition dipole moments of two similar Pt(II) complexes and their potential for high efficiency organic light-emitting diodes. Organic Electronics, 2014, 15, 3031-3037.	1.4	36
314	Fabrication and characterization of large-area flexible microfluidic organic light-emitting diode with liquid organic semiconductor. Sensors and Actuators A: Physical, 2014, 216, 231-236.	2.0	36
315	Observation of Nonradiative Deactivation Behavior from Singlet and Triplet States of Thermally Activated Delayed Fluorescence Emitters in Solution. Journal of Physical Chemistry Letters, 2020, 11, 562-566.	2.1	36
316	Ambipolar Field-Effect Transistor of High Photoluminescent Material Tetraphenylpyrene (TPPy) Single Crystal. Japanese Journal of Applied Physics, 2007, 46, L596-L598.	0.8	35
317	Organic Thin-Film Solar Cells Using Electron-Donating Perylene Tetracarboxylic Acid Derivatives. Journal of Physical Chemistry C, 2009, 113, 15454-15466.	1.5	35
318	Horizontal molecular orientation in solution-processed organic light-emitting diodes. Applied Physics Letters, 2015, 106, .	1.5	35
319	Thermally Activated Delayed Fluorescence Properties of Trioxoazatriangulene Derivatives Modified with Electron Donating Groups. Advanced Optical Materials, 2021, 9, 2002174.	3.6	35
320	Characterizing the Conformational Distribution in an Amorphous Film of an Organic Emitter and Its Application in a "Selfâ€Doping―Organic Lightâ€Emitting Diode. Angewandte Chemie - International Edition, 2021, 60, 25878-25883.	7.2	35
321	Efficient Electron Injection Characteristics of Triazine Derivatives for Transparent OLEDs (TOLEDs). Chemistry Letters, 2004, 33, 1034-1035.	0.7	34
322	Electrical properties of 1,4-bis(4-(phenylethynyl)phenylethynyl)benzene and its application for organic light emitting diodes. Chemical Communications, 2007, , 2278.	2.2	34
323	Identification of device degradation positions in multi-layered phosphorescent organic light emitting devices using water probes. Applied Physics Letters, 2012, 100, .	1.5	34
324	Capacitance-voltage characteristics of a 4,4′-bis[(<i>N</i> -carbazole)styryl]biphenyl based organic light-emitting diode: Implications for characteristic times and their distribution. Applied Physics Letters, 2013, 103, .	1.5	34

#	Article	IF	CITATIONS
325	Intrinsic carrier transport properties of solution-processed organic–inorganic perovskite films. Applied Physics Express, 2017, 10, 024103.	1.1	34
326	Large metal halide perovskite crystals for field-effect transistor applications. Applied Physics Letters, 2019, 115, .	1.5	34
327	Dithia[3.3]paracyclophane Core: A Versatile Platform for Triplet State Fineâ€Tuning and Throughâ€Space TADF Emission. Chemistry - an Asian Journal, 2019, 14, 1921-1925.	1.7	34
328	Multilayer-type organic solar cells using phthalocyanines and perylene derivatives Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1990, 1990, 962-967.	0.1	33
329	Charge-carrier injection characteristics at organic/organic heterojunction interfaces in organic light-emitting diodes. Chemical Physics Letters, 2007, 435, 327-330.	1.2	33
330	Suppression of exciton annihilation at high current densities in organic light-emitting diode resulting from energy-level alignments of carrier transport layers. Applied Physics Letters, 2008, 92, 063306.	1.5	33
331	Exciplex Formations at the HTL/Alq3Interface in an Organic Light-Emitting Diode: Influence of the Electronâ^'Hole Recombination Zone and Electric Field. Journal of Physical Chemistry C, 2010, 114, 4652-4658.	1.5	33
332	Uniform and refreshable liquid electroluminescent device with a back side reservoir. Applied Physics Letters, 2012, 101, .	1.5	33
333	Tunable and flexible solvent-free liquid organic distributed feedback lasers. Applied Physics Letters, 2015, 106, .	1.5	33
334	Near infrared electroluminescence from Nd(TTA) 3 phen in solution-processed small molecule organic light-emitting diodes. Organic Electronics, 2017, 44, 50-58.	1.4	33
335	Two Regimes of Carrier Diffusion in Vapor-Deposited Lead-Halide Perovskites. Journal of Physical Chemistry C, 2017, 121, 21600-21609.	1.5	33
336	An Electronâ€Accepting azaâ€BODIPYâ€Based Donor–Acceptor–Donor Architecture for Bright NIR Emission. Chemistry - A European Journal, 2021, 27, 5259-5267.	1.7	33
337	Electroluminescence as a probe for elucidating electrical conductivity in a deoxyribonucleic acid-cetyltrimethylammonium lipid complex layer. Applied Physics Letters, 2004, 85, 1627-1629.	1.5	32
338	Flexible Porous Bismuth Telluride Thin Films with Enhanced Figure of Merit using Microâ€Phase Separation of Block Copolymer. Advanced Materials Interfaces, 2014, 1, 1300015.	1.9	32
339	Low amplified spontaneous emission threshold and suppression of electroluminescence efficiency roll-off in layers doped with ter(9,9â \in 2-spirobifluorene). Applied Physics Letters, 2016, 108, .	1.5	32
340	Highly efficient solution-processed host-free organic light-emitting diodes showing an external quantum efficiency of nearly 18% with a thermally activated delayed fluorescence emitter. Applied Physics Express, 2016, 9, 032102.	1.1	32
341	Origin of dual emission in σ-bridged donor–acceptor TADF compounds. Journal of Materials Chemistry C, 2019, 7, 12601-12609.	2.7	32
342	Molecular orientation of disk-shaped small molecules exhibiting thermally activated delayed fluorescence in host–guest films. Applied Physics Letters, 2020, 116, .	1.5	32

#	Article	IF	CITATIONS
343	Improved Device Lifetime of Organic Light Emitting Diodes with an Electrochemically Stable Ï€-Conjugated Liquid Host in the Liquid Emitting Layer. Japanese Journal of Applied Physics, 2012, 51, 041604.	0.8	31
344	A near-infrared organic light-emitting diode based on an Yb(iii) complex synthesized by vacuum co-deposition. Chemical Communications, 2017, 53, 5457-5460.	2.2	31
345	Grain Boundary Engineering of Halide Perovskite CH ₃ NH ₃ Pbl ₃ Solar Cells with Photochemically Active Additives. Journal of Physical Chemistry C, 2018, 122, 4817-4821.	1.5	31
346	High Performance p―and nâ€Type Lightâ€Emitting Fieldâ€Effect Transistors Employing Thermally Activated Delayed Fluorescence. Advanced Functional Materials, 2018, 28, 1800340.	7.8	31
347	Photoluminescence Quenching Probes Spin Conversion and Exciton Dynamics in Thermally Activated Delayed Fluorescence Materials. Advanced Materials, 2019, 31, e1804490.	11.1	31
348	Solid cyclooctatetraene-based triplet quencher demonstrating excellent suppression of singlet–triplet annihilation in optical and electrical excitation. Nature Communications, 2020, 11, 5623.	5.8	31
349	Thermally activated delayed fluorescence of a Zr-based metal–organic framework. Chemical Communications, 2018, 54, 631-634.	2.2	30
350	Simple Molecular-Engineering Approach for Enhancing Orientation and Outcoupling Efficiency of Thermally Activated Delayed Fluorescent Emitters without Red-Shifting Emission. ACS Applied Materials & Interfaces, 2018, 10, 43842-43849.	4.0	30
351	Electroluminescence from self-organized "microdomes― Applied Physics Letters, 2004, 84, 4696-4698.	1.5	29
352	Performance of an organic photodiode as an optical detector and its application to fluorometric flow-immunoassay for IgA. Talanta, 2012, 96, 132-139.	2.9	29
353	Highly efficient bulk heterojunction photovoltaic cell based on tris[4-(5-phenylthiophen-2-yl)phenyl]amine and C70 combined with optimized electron transport layer. Applied Physics Letters, 2013, 102, .	1.5	29
354	Organic Light-emitting Diodes Based on Donor-substituted Phthalimide and Maleimide Fluorophores. Chemistry Letters, 2015, 44, 1248-1250.	0.7	29
355	Morphological control of organic–inorganic perovskite layers by hot isostatic pressing for efficient planar solar cells. Journal of Materials Chemistry A, 2015, 3, 17780-17787.	5.2	29
356	The role of fluorine-substitution on the π-bridge in constructing effective thermally activated delayed fluorescence molecules. Journal of Materials Chemistry C, 2018, 6, 5536-5541.	2.7	29
357	Detecting and identifying reversible changes in perovskite solar cells by electrochemical impedance spectroscopy. RSC Advances, 2019, 9, 33436-33445.	1.7	29
358	Novel blue-greenish electroluminescent poly(fluorenevinylene-alt-dibenzothiophenevinylene)s and their model compounds. Journal of Polymer Science Part A, 2006, 44, 6790-6800.	2.5	28
359	Amplified Spontaneous Emission and Electroluminescence from Thiophene/Phenylene Coâ€Oligomerâ€Doped <i>p</i> â€bis(<i>p</i> â€Styrylstyryl)Benzene Crystals. Advanced Optical Materials, 2013 1, 422-427.	9, 3.6	28
360	Ambipolar organic field-effect transistors based on solution-processed single crystal microwires of a quinoidal oligothiophene derivative. Chemical Communications, 2015, 51, 5836-5839.	2.2	28

#	Article	IF	CITATIONS
361	Enhanced Electroluminescence from a Thiophene-Based Insulated Molecular Wire. ACS Macro Letters, 2016, 5, 781-785.	2.3	28
362	Ultrahigh Power Efficiency Thermally Activated Delayed Fluorescent OLEDs by the Strategic Use of Electronâ€Transport Materials. Advanced Optical Materials, 2018, 6, 1800376.	3.6	28
363	The Relation of Phaseâ€Transition Effects and Thermal Stability of Planar Perovskite Solar Cells. Advanced Science, 2019, 6, 1801079.	5.6	28
364	Understanding degradation of organic light-emitting diodes from magnetic field effects. Communications Materials, 2020, 1, .	2.9	28
365	Excited State Dynamics of Thermally Activated Delayed Fluorescence from an Excited State Intramolecular Proton Transfer System. Journal of Physical Chemistry Letters, 2020, 11, 3305-3312.	2.1	28
366	Photoluminescence characteristics of tris(2-phenylquinoline)iridium(III) dispersed in an iridium complex host layer. Chemical Physics Letters, 2009, 483, 224-226.	1.2	27
367	Fabrication of a Flexible Bismuth Telluride Power Generation Module Using Microporous Polyimide Films as Substrates. Journal of Electronic Materials, 2014, 43, 1733-1739.	1.0	27
368	Suppression of external quantum efficiency roll-off of nanopatterned organic-light emitting diodes at high current densities. Journal of Applied Physics, 2015, 118, 155501.	1.1	27
369	Benzimidazobenzothiazoleâ€Based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2016, 128, 6978-6982.	1.6	27
370	Solvent-dependent investigation of carbazole benzonitrile derivatives: does the LE3â^'CT1 energy gap facilitate thermally activated delayed fluorescence?. Journal of Photonics for Energy, 2018, 8, 1.	0.8	27
371	Spontaneous formation of metastable orientation with well-organized permanent dipole moment in organic glassy films. Nature Materials, 2022, 21, 819-825.	13.3	27
372	Highly Efficient Deepâ€Blue Organic Lightâ€Emitting Diodes Based on Rational Molecular Design and Device Engineering. Advanced Functional Materials, 2022, 32, .	7.8	27
373	Fluorinated Carbazole Derivatives as Wide-Energy-Gap Host Material for Blue Phosphorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2012, 116, 20681-20687.	1.5	26
374	Polymorphism in 9,9-diarylfluorene-based organic semiconductors: influence on optoelectronic functions. Chemical Communications, 2014, 50, 1523-1526.	2.2	26
375	Exciton Quenching Behavior of Thermally Activated Delayed Fluorescence Molecules by Charge Carriers. Journal of Physical Chemistry C, 2015, 119, 7631-7636.	1.5	26
376	An Organic Laser Dye having a Small Singletâ€Triplet Energy Gap Makes the Selection of a Host Material Easier. Advanced Functional Materials, 2020, 30, 2001078.	7.8	26
377	Synthesis, Aromaticity, and Application of <i>peri</i> â€Pentacenopentacene: Localized Representation of Benzenoid Aromatic Compounds. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
378	Emission behavior of molecularly doped electroluminescent device using liquid-crystalline matrix. Applied Physics Letters, 2000, 77, 1587-1589.	1.5	25

#	Article	IF	CITATIONS
379	Horizontal Orientation of a Linear-Shaped Platinum(II) Complex in Organic Light-Emitting Diodes with a High Light Out-Coupling Efficiency. Applied Physics Express, 2011, 4, 071602.	1.1	25
380	Multi-color light-emitting transistors composed of organic single crystals. Organic Electronics, 2013, 14, 2737-2742.	1.4	25
381	Effect of Joule heating on transient current and electroluminescence in p-i-n organic light-emitting diodes under pulsed voltage operation. Organic Electronics, 2016, 31, 287-294.	1.4	25
382	Donor–Ïf–Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion. Angewandte Chemie, 2017, 129, 16763-16767.	1.6	25
383	A wide-energy-gap naphthalene-based liquid organic semiconductor host for liquid deep-blue organic light-emitting diodes. Journal of Luminescence, 2018, 200, 19-23.	1.5	25
384	The Importance of Excited‣tate Energy Alignment for Efficient Exciplex Systems Based on a Study of Phenylpyridinato Boron Derivatives. Angewandte Chemie, 2018, 130, 12560-12564.	1.6	25
385	Degradation Mechanism and Stability Improvement Strategy for an Organic Laser Gain Material 4,4′â€Bis[(<i>N</i> â€carbazole)styryl]biphenyl (BSBCz). Advanced Functional Materials, 2019, 29, 1807148.	7.8	25
386	Control of the dual emission from a thermally activated delayed fluorescence emitter containing phenothiazine units in organic light-emitting diodes. RSC Advances, 2019, 9, 4336-4343.	1.7	25
387	Highly Efficient Thermally Activated Delayed Fluorescence with Slow Reverse Intersystem Crossing. Chemistry Letters, 2019, 48, 126-129.	0.7	25
388	Solution-Processed Dendrimer-Based TADF Materials for Deep-Red OLEDs. Macromolecules, 2020, 53, 10375-10385.	2.2	25
389	Modulating the ground state, stability and charge transport in OFETs of biradicaloid hexahydro-diindenopyrene derivatives and a proposed method to estimate the biradical character. Chemical Science, 2020, 11, 12194-12205.	3.7	25
390	Hot exciplexes in U-shaped TADF molecules with emission from locally excited states. Nature Communications, 2021, 12, 6179.	5.8	25
391	Organic Light Emitting Diodes Using Triphenylene Derivatives as a Hole Transport Material. Chemistry Letters, 1998, 27, 975-976.	0.7	24
392	Estimation of carrier recombination and electroluminescence emission regions in organic light-emitting field-effect transistors using local doping method. Applied Physics Letters, 2006, 88, 093514.	1.5	24
393	High-current Injection and Transport on Order of kA/cm2in Organic Light-emitting Diodes Having Mixed Organic/Organic Heterojunction Interfaces. Japanese Journal of Applied Physics, 2007, 46, L861-L863.	0.8	24
394	Comparison of small amounts of polycrystalline donor materials in C70-based bulk heterojunction photovoltaics and optimization of dinaphthothienothiophene based photovoltaic. Organic Electronics, 2014, 15, 878-885.	1.4	24
395	Influence of material impurities in the hole-blocking layer on the lifetime of organic light-emitting diodes. Applied Physics Letters, 2016, 109, .	1.5	24
396	Enhanced organic solar cells efficiency through electronic and electro-optic effects resulting from charge transfers in polymer hole transport blends. Journal of Materials Chemistry A, 2016, 4, 4252-4263.	5.2	24

#	Article	IF	CITATIONS
397	Deep-Red Amplified Spontaneous Emission from <i>cis</i> -Configured Squaraine. ACS Applied Materials & Interfaces, 2018, 10, 27-31.	4.0	24
398	Fluoro-substituted Phenyleneethynylenes: Acetylenic n-Type Organic Semiconductors. Chemistry Letters, 2010, 39, 1300-1302.	0.7	23
399	Multi-layered organic light-emitting diode fabrication using low molecular weight materials by electrospray method. Thin Solid Films, 2013, 545, 527-532.	0.8	23
400	Control of the Singlet–Triplet Energy Gap in a Thermally Activated Delayed Fluorescence Emitter by Using a Polar Host Matrix. Nanoscale Research Letters, 2017, 12, 268.	3.1	23
401	Well-Ordered 4CzIPN ((4s,6s)-2,4,5,6-Tetra(9-H-carbazol-9-yl)isophthalonitrile) Layers: Molecular Orientation, Electronic Structure, and Angular Distribution of Photoluminescence. Journal of Physical Chemistry Letters, 2018, 9, 863-867.	2.1	23
402	Toward air-stable field-effect transistors with a tin iodide-based hybrid perovskite semiconductor. Journal of Applied Physics, 2019, 125, .	1.1	23
403	Lasing Operation under Longâ€Pulse Excitation in Solutionâ€Processed Organic Gain Medium: Toward CW Lasing in Organic Semiconductors. Advanced Optical Materials, 2020, 8, 2001234.	3.6	23
404	Highly Efficient Nearâ€Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angewandte Chemie, 2021, 133, 8558-8563.	1.6	23
405	Photosensitizing properties of the porphycene immobilized in sol–gel derived silica coating films. Tetrahedron Letters, 2008, 49, 6198-6201.	0.7	22
406	Photophysical and Photocatalytic Properties of β-Sulfonatoporphycenes. Chemistry Letters, 2008, 37, 264-265.	0.7	22
407	Single molecule color controllable light emitting organic field effect transistors for white light emission with high color stability. Applied Physics Letters, 2009, 95, .	1.5	22
408	Very high open-circuit voltage of 5.89 V in organic solar cells with 10-fold-tandem structure. Applied Physics Letters, 2012, 100, .	1.5	22
409	A designed fluorescent anthracene derivative: Theory, calculation, synthesis, and characterization. Chemical Physics Letters, 2014, 602, 80-83.	1.2	22
410	Photometric flow injection determination of phosphate on a PDMS microchip using an optical detection system assembled with an organic light emitting diode and an organic photodiode. Talanta, 2015, 132, 96-105.	2.9	22
411	Increasing the horizontal orientation of transition dipole moments in solution processed small molecular emitters. Journal of Materials Chemistry C, 2017, 5, 6555-6562.	2.7	22
412	Low-Threshold Light Amplification in Bifluorene Single Crystals: Role of the Trap States. ACS Applied Materials & Interfaces, 2018, 10, 2768-2775.	4.0	22
413	Enhanced Electroluminescence from Organic Lightâ€Emitting Diodes with an Organic–Inorganic Perovskite Host Layer. Advanced Materials, 2018, 30, e1802662.	11.1	22
414	Isotope Effect of Host Material on Device Stability of Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Diodes. Small Science, 2021, 1, 2000057.	5.8	22

#	Article	IF	CITATIONS
415	ELECTROLUMINESCENCE IN ORGANIC THIN FILMS. , 1991, , 437-450.		21
416	Real-Time Measurement of Molecular Orientational Randomization Dynamics during Annealing Treatments by In-Situ Ellipsometry. Journal of Physical Chemistry C, 2012, 116, 11584-11588.	1.5	21
417	[Paper] Meta-linking Strategy for Thermally Activated Delayed Fluorescence Emitters with a Small Singlet-Triplet Energy Gap. ITE Transactions on Media Technology and Applications, 2015, 3, 108-113.	0.3	21
418	Singlet-Triplet Exciton Annihilation Nearly Suppressed in Organic Semiconductor Laser Materials Using Oxygen as a Triplet Quencher. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 26-34.	1.9	21
419	Triplet-triplet annihilation in a thermally activated delayed fluorescence emitter lightly doped in a host. Applied Physics Letters, 2018, 113, .	1.5	21
420	High EQE and High Brightness Solutionâ€Processed TADF Lightâ€Emitting Transistors and OLEDs. Advanced Optical Materials, 2020, 8, 2000554.	3.6	21
421	Tailorâ€Made Multiâ€Resonance Terminal Emitters toward Narrowband, Highâ€Efficiency, and Stable Hyperfluorescence Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	21
422	Organic electroluminescent device with cyanine dye Langmuir-Blodgett film as an emitter. Thin Solid Films, 1992, 210-211, 468-470.	0.8	20
423	Enhancing hole transports and generating hole traps by doping organic hole-transport layers with p-type molecules of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane. Thin Solid Films, 2008, 517, 874-877.	0.8	20
424	An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel. Talanta, 2013, 117, 139-145.	2.9	20
425	Photo-patternable electroluminescence based on one-way photoisomerization reaction of tetraoxidized triangle terarylenes. Chemical Communications, 2013, 49, 6373.	2.2	20
426	Quantification of temperature rise in unipolar organic conductors during short voltage-pulse excitation using electrical testing methods. Organic Electronics, 2016, 31, 191-197.	1.4	20
427	Reversible control of triplet dynamics in metal-organic framework-entrapped organic emitters via external gases. Communications Chemistry, 2018, 1, .	2.0	20
428	Computational Analysis of the Interplay between Deep Level Traps and Perovskite Solar Cell Efficiency. Journal of the American Chemical Society, 2018, 140, 15655-15660.	6.6	20
429	F8BT Oligomers for Organic Solid-State Lasers. ACS Applied Materials & Interfaces, 2020, 12, 28383-28391.	4.0	20
430	Observation of Extremely High Current Densities on Order of MA/cm2in Copper Phthalocyanine Thin-Film Devices with Submicron Active Areas. Japanese Journal of Applied Physics, 2007, 46, L1179-L1181.	0.8	19
431	Influence of heat treatment on indium–tin-oxide anodes and copper phthalocyanine hole injection layers in organic light-emitting diodes. Thin Solid Films, 2007, 515, 4812-4818.	0.8	19
432	Fluorometric flow-immunoassay for alkylphenol polyethoxylates on a microchip containing a fluorescence detector comprised of an organic light emitting diode and an organic photodiode. Talanta, 2015, 134, 37-47.	2.9	19

#	Article	IF	CITATIONS
433	Fabrication-method Independence of Organic Long-persistent Luminescence Performance. Chemistry Letters, 2019, 48, 270-273.	0.7	19
434	Near-infrared absorbing pyrrolopyrrole aza-BODIPY-based donor–acceptor polymers with reasonable photoresponse. Journal of Materials Chemistry C, 2020, 8, 8770-8776.	2.7	19
435	Enhancing Small-Molecule Organic Photodetector Performance for Reflectance-Mode Photoplethysmography Sensor Applications. ACS Applied Electronic Materials, 2020, 2, 1280-1288.	2.0	19
436	Realizing Nearâ€Infrared Laser Dyes through a Shift inÂExcitedâ€State Absorption. Advanced Optical Materials, 2021, 9, 2001947.	3.6	19
437	High-performance solution-processed red hyperfluorescent OLEDs based on cibalackrot. Journal of Materials Chemistry C, 2022, 10, 4767-4774.	2.7	19
438	Blue Organic Electrophosphorescence Diodes using Diarylamino-substituted Heterocyclic Compounds as Host Material. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 47-51.	0.1	18
439	Analysis of Carrier Traps in Continuously Operated 4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl/tris(8-hydroxyquinoline)aluminum-Based Organic Light-Emitting Diodes by Thermally Stimulated Current Measurement. Japanese Journal of Applied Physics, 2007, 46, L636-L639.	0.8	18
440	Alignment-free process for asymmetric contact electrodes and their application in light-emitting organic field-effect transistors. Applied Physics Letters, 2008, 92, .	1.5	18
441	Charge separation and transport behavior of a two-dimensional charge sheet at organic donor-acceptor heterointerfaces. Journal of Applied Physics, 2009, 105, .	1.1	18
442	Plasma-tolerant structure for organic light-emitting diodes with aluminum cathodes fabricated by DC magnetron sputtering: Using a Li-doped electron transport layer. Organic Electronics, 2013, 14, 2994-2999.	1.4	18
443	Fabrication of high-efficiency multilayered organic light-emitting diodes by a film transfer method. Organic Electronics, 2014, 15, 1695-1701.	1.4	18
444	Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors. Scientific Reports, 2015, 5, 14547.	1.6	18
445	Microcrystallization of a Solution-Processable Organic Semiconductor in Capillaries for High-Performance Ambipolar Field-Effect Transistors. ACS Applied Materials & Interfaces, 2016, 8, 17574-17582.	4.0	18
446	Quenching Behavior of Thermally Activated Delayed Fluorescence from a Donor–Acceptor Molecule, 1,2,3,5-Tetrakis(carbazol-9-yl)-4,6-dicyanobenzene by O ₂ . Chemistry Letters, 2016, 45, 1183-1185.	0.7	18
447	Synthesis by a Cost-Effective Method and Electroluminescence of a Novel Efficient Yellowish-Green Thermally Activated Delayed Fluorescent Molecule. ACS Omega, 2018, 3, 2254-2260.	1.6	18
448	Utilization of Multi-Heterodonors in Thermally Activated Delayed Fluorescence Molecules and Their High Performance Bluish-Green Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 9498-9506.	4.0	18
449	Color-Tunable Low-Threshold Amplified Spontaneous Emission from Yellow to Near-Infrared (NIR) Based on Donor–Spacer–Acceptor–Spacer–Donor Linear Dyes. , 2020, 2, 1567-1574.		18
450	Role of Spontaneous Orientational Polarization in Organic Donor–Acceptor Blends for Exciton Binding. Advanced Optical Materials, 2020, 8, 2000896.	3.6	18

#	Article	IF	CITATIONS
451	Molecular Design Based on Donor-Weak Donor Scaffold for Blue Thermally-Activated Delayed Fluorescence Designed by Combinatorial DFT Calculations. Frontiers in Chemistry, 2020, 8, 403.	1.8	18
452	Effect of Vibronic Coupling on Correlated Triplet Pair Formation in the Singlet Fission Process of Linked Tetracene Dimers. Journal of Physical Chemistry A, 2020, 124, 3641-3651.	1.1	18
453	Active Control of Spontaneous Orientation Polarization of Tris(8â€hydroxyquinolinato)aluminum (Alq ₃) Films and Its Effect on Performance of Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2021, 7, 2100486.	2.6	18
454	A Thermally Activated Delayed Fluorescence Green OLED with 4500 h Lifetime and 20% External Quantum Efficiency by Optimizing the Emission Zone using a Singleâ€Emission Spectrum Technique. Advanced Materials, 2022, 34, e2201409.	11.1	18
455	Spectrally Narrow Emission at Cutoff Wavelength from Edge of Electrically Pumped Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2007, 46, L826-L829.	0.8	17
456	High efficiency blue light emitting unipolar transistor incorporating multifunctional electrodes. Applied Physics Letters, 2009, 94, 153307.	1.5	17
457	Organic Single-Crystal Transistors Based on π-Extended Heteroheptacene Microribbons. Bulletin of the Chemical Society of Japan, 2012, 85, 1186-1191.	2.0	17
458	Effects of Intramolecular Donor–Acceptor Interactions on Bimolecular Recombination in Small-Molecule Organic Photovoltaic Cells. Journal of Physical Chemistry C, 2013, 117, 4986-4991.	1.5	17
459	Photostable and highly emissive glassy organic dots exhibiting thermally activated delayed fluorescence. Chemical Communications, 2019, 55, 5215-5218.	2.2	17
460	Markedly Improved Performance of Optically Pumped Organic Lasers with Two-Dimensional Distributed-Feedback Gratings. ACS Photonics, 2021, 8, 1324-1334.	3.2	17
461	Planar and Rigid Pyrazineâ€Based TADF Emitter for Deep Blue Bright Organic Lightâ€Emitting Diodes. European Journal of Organic Chemistry, 2021, 2021, 2285-2293.	1.2	17
462	Carrier Injection and Transport of Steady-State High Current Density Exceeding 1000 A/cm2in Organic Thin Films*. Japanese Journal of Applied Physics, 2003, 42, L1353-L1355.	0.8	16
463	An integrated enzymeâ€linked immunosorbent assay system with an organic lightâ€emitting diode and a chargeâ€coupled device for fluorescence detection. Journal of Separation Science, 2011, 34, 2906-2912.	1.3	16
464	Origin of external quantum efficiency roll-off in 4,4′-bis[(<i>N</i> -carbazole)styryl]biphenyl (BSBCz)-based inverted organic light emitting diode under high pulsed electrical excitation. Journal of Applied Physics, 2019, 126, .	1.1	16
465	Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation. Advanced Optical Materials, 2021, 9, 2101048.	3.6	16
466	Recycling of Triplets into Singlets for Highâ€₽erformance Organic Lasers. Advanced Optical Materials, 2022, 10, 2101302.	3.6	16
467	Durability Characteristics of Aminopyrene Dimer Molecules as an Emitter in Organic Multilayered Electroluminescent Diodes. Japanese Journal of Applied Physics, 1996, 35, 4819-4825.	0.8	15
468	A 200 nm×2 mm array of organic light-emitting diodes and their anisotropic electroluminescence. Applied Physics Letters, 1999, 74, 1206-1208.	1.5	15

#	Article	IF	CITATIONS
469	Low-Damage Indium Tin Oxide Formation on Organic Layers Using Unique Cylindrical Sputtering Module and Application in Transparent Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2006, 45, L213-L216.	0.8	15
470	High Carrier Mobility of 3.8 cm\$^{2}\$ V\$^{-1}\$ s\$^{-1}\$ in Polydiacetylene Thin Films Polymerized by Electron Beam Irradiation. Applied Physics Express, 2011, 4, 091601.	1.1	15
471	Highly photostable distributed-feedback polymer waveguide blue laser using spirobifluorene derivatives. Optical Materials, 2011, 33, 755-758.	1.7	15
472	Highly conductive interface between a rubrene single crystal and a molybdenum oxide layer and its application in transistors. Solid State Communications, 2011, 151, 93-96.	0.9	15
473	Analysis of alternating current driven electroluminescence in organic light emitting diodes: A comparative study. Organic Electronics, 2014, 15, 1815-1821.	1.4	15
474	Horizontal molecular orientation of light-emitting oligofluorenes in spin-coated glassy organic thin films. Journal of Materials Chemistry C, 2016, 4, 11557-11565.	2.7	15
475	Dependence of the amorphous structures and photoluminescence properties of tris(8-hydroxyquinolinato)aluminum films on vacuum deposition conditions. Organic Electronics, 2019, 67, 237-241.	1.4	15
476	Intramolecular-rotation driven triplet-to-singlet upconversion and fluctuation induced fluorescence activation in linearly connected donor–acceptor molecules. Journal of Chemical Physics, 2020, 153, 204702.	1.2	15
477	Toward Thing-to-Thing Optical Wireless Power Transfer: Metal Halide Perovskite Transceiver as an Enabler. Frontiers in Energy Research, 2021, 9, .	1.2	15
478	An Elementâ€Substituted Cyclobutadiene Exhibiting Highâ€Energy Blue Phosphorescence. Angewandte Chemie - International Edition, 2021, 60, 21817-21823.	7.2	15
479	Blue-to-red electroluminescence from organic light-emitting field-effect transistor using various organic semiconductor materials. Journal of the Society for Information Display, 2005, 13, 869.	0.8	14
480	Alternating copolyfluorenevinyles with polynuclear aromatic moieties: Synthesis, photophysics, and electroluminescence. Journal of Polymer Science Part A, 2007, 45, 4661-4670.	2.5	14
481	Highly Efficient Organic Light-Emitting Diodes Doped with Thiophene/Phenylene Co-Oligomer. Chemistry of Materials, 2008, 20, 2881-2883.	3.2	14
482	Droplet Manipulation by an External Electric Field for Crystalline Film Growth. Langmuir, 2013, 29, 9592-9597.	1.6	14
483	37.1:Invited Paper: Third Generation OLED by Hyperfluorescence. Digest of Technical Papers SID International Symposium, 2013, 44, 513-514.	0.1	14
484	Enhancement of the electrical characteristics of metal-free phthalocyanine films using cold isostatic pressing. Applied Physics Letters, 2014, 105, .	1.5	14
485	Introduction of oxygen into organic thin films with the aim of suppressing singlet–triplet annihilation. Chemical Physics Letters, 2015, 624, 43-46.	1.2	14
486	Blue Thermally Activated Delayed Fluorescence Molecule Having Acridane and Cyanobenzene Units. Chemistry Letters, 2016, 45, 1463-1466.	0.7	14

#	Article	IF	CITATIONS
487	Joule heat-induced breakdown of organic thin-film devices under pulse operation. Journal of Applied Physics, 2017, 121, .	1.1	14
488	Bifluorene Single Crystals with Extremely Lowâ€Threshold Amplified Spontaneous Emission. Advanced Optical Materials, 2017, 5, 1600823.	3.6	14
489	TADF activation by solvent freezing: The role of nonradiative triplet decay and spin-orbit coupling in carbazole benzonitrile derivatives. Synthetic Metals, 2019, 252, 62-68.	2.1	14
490	Enhanced Energy Transfer in Doped Bifluorene Single Crystals: Prospects for Organic Lasers. Advanced Optical Materials, 2020, 8, 1901670.	3.6	14
491	Low Amplified Spontaneous Emission and Lasing Thresholds from Hybrids of Fluorenes and Vinylphenylcarbazole. Advanced Optical Materials, 2020, 8, 2000784.	3.6	14
492	Synthesis, crystal structure and charge transport characteristics of stable peri-tetracene analogues. Chemical Science, 2021, 12, 552-558.	3.7	14
493	Electronâ€Affinity Substituent in 2,6â€Dicarbonitrile Diphenylâ€Iλ ⁵ â€Phosphinine Towards Highâ€Quality Organic Lasing and Electroluminescence under High Current Injection. Advanced Functional Materials, 2021, 31, 2104529.	7.8	14
494	Submicrometer-Sized Organic Light Emitting Diodes with a Triphenylamine-Containing Polycarbonate as a Guest Molecule in a Polymer Blend. Japanese Journal of Applied Physics, 1997, 36, L827-L830.	0.8	13
495	Reduced amplified spontaneous emission threshold in organic semiconductor laser structure with relaxed roll-off characteristics under high current densities. Journal of Luminescence, 2013, 143, 754-758.	1.5	13
496	Enhanced out-coupling efficiency of organic light-emitting diodes using an nanostructure imprinted by an alumina nanohole array. Applied Physics Letters, 2014, 104, .	1.5	13
497	Analysis of electron traps formed in organic films with a sputtered cathode. Organic Electronics, 2014, 15, 2783-2791.	1.4	13
498	Seamless growth of a supramolecular carpet. Nature Communications, 2016, 7, 10653.	5.8	13
499	Molecular Design for Blue Thermal Activated Delayed Fluorescence Materials: Substitution Position Effect. Chemistry Letters, 2017, 46, 1490-1492.	0.7	13
500	Luminescent Cu(I) and Ag(I) coordination polymers: Fast phosphorescence or thermally activated delayed fluorescence. Chinese Chemical Letters, 2019, 30, 1931-1934.	4.8	13
501	Enhanced near-infrared electroluminescence from a neodymium complex in organic light-emitting diodes with a solution-processed exciplex host. Applied Physics Letters, 2019, 114, .	1.5	13
502	A solvent-free and vacuum-free melt-processing method to fabricate organic semiconducting layers with large crystal size for organic electronic applications. Journal of Materials Chemistry C, 2019, 7, 3190-3198.	2.7	13
503	Intersystem Crossing Rate in Thermally Activated Delayed Fluorescence Emitters. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900616.	0.8	13
504	High performance planar microcavity organic semiconductor lasers based on thermally evaporated top distributed Bragg reflector. Applied Physics Letters, 2020, 117, 153301.	1.5	13

#	Article	IF	CITATIONS
505	Photoactive Organic/Inorganic Hybrid Materials with Nanosegregated Donor–Acceptor Arrays. Angewandte Chemie - International Edition, 2021, 60, 8419-8424.	7.2	13
506	Deep Blue Fluorescent Material with an Extremely High Ratio of Horizontal Orientation to Enhance Light Outcoupling Efficiency (44%) and External Quantum Efficiency in Doped and Non-Doped Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 34605-34615.	4.0	13
507	Lowâ€Threshold Excitonâ€Polariton Condensation via Fast Polariton Relaxation in Organic Microcavities. Advanced Optical Materials, 2022, 10, 2102034.	3.6	13
508	Efficiency of Thermally Activated Delayed Fluorescence Sensitized Triplet Upconversion Doubled in Threeâ€Component System. Advanced Materials, 2022, 34, e2103976.	11.1	13
509	Significant role of spin-triplet state for exciton dissociation in organic solids. Science Advances, 2022, 8, eabj9188.	4.7	13
510	Molecular LED: Design Concept of Molecular Materials for High-Performance OLED. , 2004, , 43-69.		12
511	Improvement in the light outcoupling efficiency of organic light-emitting diodes using a hemispherical lens and a multipatterned one-dimensional photonic crystal fabricated by autocloning. Applied Physics Express, 2015, 8, 082102.	1.1	12
512	Tetraphenyldibenzoperiflanthene as sensitizer for enhancing the performance in dinaphthothienothiophene-based photovoltaics with and without fullerene. Synthetic Metals, 2015, 205, 121-126.	2.1	12
513	Field-effect transistors with vacuum-deposited organic-inorganic perovskite films as semiconductor channels. Journal of Applied Physics, 2016, 120, .	1.1	12
514	Application of wide-energy-gap material 3,4-di(9H-carbazol-9-yl) benzonitrile in organic light-emitting diodes. Thin Solid Films, 2016, 619, 120-124.	0.8	12
515	Heptacene: Synthesis and Its Holeâ€Transfer Property in Stable Thin Films. Chemistry - A European Journal, 2021, 27, 10677-10684.	1.7	12
516	Low Threshold Gain-Narrowing Characteristics of Fluorescent Styrylbenzene Derivatives as a Guest Molecule in an Organic Thin-Film Optical Waveguide. Chemistry Letters, 2000, 29, 754-755.	0.7	11
517	Very low amplified spontaneous emission threshold and electroluminescence characteristics of 1,1′-diphenyl substituted fluorene derivatives. Optical Materials, 2007, 30, 630-636.	1.7	11
518	Low driving voltage organic light emitting diode using phenanthrene oligomers as electron transport layer. Thin Solid Films, 2008, 516, 8717-8720.	0.8	11
519	Bright electroluminescence from single-layer organic light-emitting diodes comprising an ambipolar carrier transport layer of phenyldipyrenylphosphine oxide. Thin Solid Films, 2008, 516, 4288-4292.	0.8	11
520	Finite difference time domain analysis of the light extraction efficiency in organic light-emitting field-effect transistors. Journal of Applied Physics, 2008, 104, 033116.	1.1	11
521	Nanocrystal Growth and Improved Performance of Small Molecule Bulk Heterojunction Solar Cells Composed of a Blend of Chloroaluminum Phthalocyanine and C ₇₀ . Applied Physics Express, 2010, 3, 121602.	1.1	11
522	Photophysical characteristics of 4,4′-bis(N-carbazolyl)tolan derivatives and their application in organic light emitting diodes. Journal of Luminescence, 2011, 131, 1520-1524.	1.5	11

#	Article	IF	CITATIONS
523	High-coverage organic-inorganic perovskite film fabricated by double spin coating for improved solar power conversion and amplified spontaneous emission. Chemical Physics Letters, 2016, 661, 131-135.	1.2	11
524	58-2: Revealing the Excited-state Dynamics of Thermally Activated Delayed Flourescence Molecules by using Transient Absorption Spectrospy. Digest of Technical Papers SID International Symposium, 2016, 47, 786-789.	0.1	11
525	Origin and Suppression of External Quantum Efficiency Roll-Off in Quasi-Two-Dimensional Metal Halide Perovskite Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 27422-27428.	1.5	11
526	Thermally activated processes in an organic long-persistent luminescence system. Nanoscale, 2021, 13, 8412-8417.	2.8	11
527	2,6â€Dicarbonitrile Diphenylâ€1λ ⁵ â€Phosphinine (DCNP)—A Robust Conjugated Building Block fo Multiâ€Functional Dyes Exhibiting Tunable Amplified Spontaneous Emission. Advanced Optical Materials, 2021, 9, 2101122.	or 3.6	11
528	Electroluminescence in multilayer organic dye films. Synthetic Metals, 1991, 41, 1193-1196.	2.1	10
529	Optical and Electrical Properties of Bis(4-(phenylethynyl)phenyl)ethynes and Their Application to Organic Field-Effect Transistors. Japanese Journal of Applied Physics, 2006, 45, L1331-L1333.	0.8	10
530	A high mobility ambipolar field effect transistor using a 2,6-diphenylbenzo[1,2-b:4,5-b ′]diselenophene/fullerene double layer. Solid State Communications, 2008, 145, 114-117.	0.9	10
531	Synthesis and characterization of CdSe nanocrystals capped with TOPO and pyridine. Journal of Crystal Growth, 2012, 339, 22-30.	0.7	10
532	Formation of high-purity organic thin films by gas flow deposition and the effect of impurities on device characteristics. Displays, 2013, 34, 418-422.	2.0	10
533	Self-assembly, Physicochemical, and Field-effect Transistor Properties of Solution-crystallized Organic Semiconductors Based on l̃€-Extended Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]thiophenes. Chemistry Letters, 2014, 43, 293-295.	0.7	10
534	Dipole orientation analysis without optical simulation: application to thermally activated delayed fluorescence emitters doped in host matrix. Scientific Reports, 2017, 7, 8405.	1.6	10
535	Electrogenerated Chemiluminescence of a BODIPY Derivative with Extended Conjugation. ChemistrySelect, 2017, 2, 10531-10536.	0.7	10
536	Exciton diffusion in bifluorene single crystals studied by light induced transient grating technique. Applied Physics Letters, 2018, 112, .	1.5	10
537	Simultaneous Edgeâ€on to Faceâ€on Reorientation and 1D Alignment of Small Ï€â€Conjugated Molecules Using Roomâ€Temperature Mechanical Rubbing. Advanced Functional Materials, 2018, 28, 1707038.	7.8	10
538	Unintentional passivation of 4-tertbutyl pyridine for improved efficiency and decreased operational stability of perovskite solar cells. Applied Physics Letters, 2021, 118, .	1.5	10
539	Improved Device Lifetime of Organic Light Emitting Diodes with an Electrochemically Stable I€-Conjugated Liquid Host in the Liquid Emitting Layer. Japanese Journal of Applied Physics, 2012, 51, 041604.	0.8	10
540	Reorganization of the molecular orientation at the organic/substrate interface in spirofluorene thin films. Chemical Physics Letters, 2013, 563, 70-75.	1.2	9

#	Article	IF	CITATIONS
541	Triphenylene-based Host Materials for Low-voltage, Highly Efficient Red Phosphorescent Organic Light-emitting Diodes. Chemistry Letters, 2013, 42, 383-385.	0.7	9
542	Accurate measurement of dopant concentration in organic light-emitting diodes by combining high-performance liquid chromatography and TOF-SIMS. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 030604.	0.6	9
543	Influence of deposition substrate temperature on the morphology and molecular orientation of chloroaluminum phthalocyanine films as well the performance of organic photovoltaic cells. Nanotechnology, 2015, 26, 405202.	1.3	9
544	Vacuum chamber considerations for improved organic light-emitting diode lifetime. AIP Advances, 2018, 8, 085025.	0.6	9
545	The origin of changes in electrical properties of organic films fabricated at various vacuum-deposition rates. Optical Materials, 2019, 91, 93-100.	1.7	9
546	Excited-state stability of quasi-two-dimensional metal halide perovskite films under optical and electrical excitations. Applied Physics Letters, 2019, 115, .	1.5	9
547	Orange Organic Long-persistent Luminescence from an Electron Donor/Acceptor Binary System. Chemistry Letters, 2020, 49, 203-206.	0.7	9
548	Visualization of Frontier Molecular Orbital Separation of a Single Thermally Activated Delayed Fluorescence Emitter by STM. Journal of Physical Chemistry Letters, 2021, 12, 7512-7518.	2.1	9
549	Enhanced Operational Durability of Thermally Activated Delayed Fluorescenceâ€Based Organic Lightâ€Emitting Diodes with a Triazine Electron Transporter. Chemistry - A European Journal, 2020, 26, 5598-5602.	1.7	9
550	Performance Analysis of a Perovskite-Based Thing-to-Thing Optical Wireless Power Transfer System. IEEE Photonics Journal, 2022, 14, 1-8.	1.0	9
551	Steric Modulation of Spiro Structure for Highly Efficient Multiple Resonance Emitters. Angewandte Chemie, 2022, 134, .	1.6	9
552	Control of the molecular orientation of a 2,2′-bithiophene-9,9-dioctylfluorene copolymer by laser annealing and subsequent enhancement of the field effect transistor characteristics. Applied Physics Letters, 2009, 95, .	1.5	8
553	High-Efficiency Sky-Blue Organic Light-Emitting Diodes Utilizing Thermally-Activated Delayed Fluorescence. IEICE Transactions on Electronics, 2015, E98.C, 971-976.	0.3	8
554	Comparison of transient state and steady state exciton–exciton annihilation rates based on Förster-type energy transfer. Japanese Journal of Applied Physics, 2015, 54, 071601.	0.8	8
555	06 – 16 THz band spectroscopy of organic thermally activated delayed fluorescence materials. Optical Materials Express, 2016, 6, 3045.	1.6	8
556	Thermally Activated Delayed Fluorescence from Pentacarbazorylbenzonitrile. Chemistry Letters, 2016, 45, 770-772.	0.7	8
557	Solutionâ€processable thermally activated delayed fluorescence emitters for application in organic light emitting diodes. Journal of the Society for Information Display, 2017, 25, 480-485.	0.8	8
558	Carrier Recombination and Diffusion in Wet-Cast Tin Iodide Perovskite Layers Under High Intensity Photoexcitation. Journal of Physical Chemistry C, 2019, 123, 19275-19281.	1.5	8

#	Article	IF	CITATIONS
559	Electrogenerated Chemiluminescence and Electronic States of Several Organometallic Eu(III) and Tb(III) Complexes: Effects of the Ligands. ChemistrySelect, 2019, 4, 2815-2831.	0.7	8
560	Precise Exciton Management of Quaternary Emission Layers for Highly Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2020, 12, 50668-50674.	4.0	8
561	Sub-Microsecond TADF Emission in D-D′-A Emitters. Chemistry Letters, 2020, 49, 932-935.	0.7	8
562	A spirofluorene-end-capped bis-stilbene derivative with a low amplified spontaneous emission threshold and balanced hole and electron mobilities. Optical Materials, 2020, 100, 109636.	1.7	8
563	Killer impurities in vacuum chamber that affect the lifetime of organic light-emitting diodes. Applied Physics Letters, 2020, 116, .	1.5	8
564	An Elementâ€Substituted Cyclobutadiene Exhibiting Highâ€Energy Blue Phosphorescence. Angewandte Chemie, 2021, 133, 21988-21994.	1.6	8
565	Characterizing the Conformational Distribution in an Amorphous Film of an Organic Emitter and Its Application in a "Selfâ€Doping―Organic Lightâ€Emitting Diode. Angewandte Chemie, 2021, 133, 26082-260	⊃8 7 .	8
566	Oxadiazole Derivatives for Emitter and Carrier Transport Materials in Organic Electroluminescent Devices Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1991, , 1540-1548.	0.1	8
567	Carbazole-2-carbonitrile as an acceptor in deep-blue thermally activated delayed fluorescence emitters for narrowing charge-transfer emissions. Chemical Science, 2022, 13, 7821-7828.	3.7	8
568	Efficient Electron Injection Characteristics of Tetra-2-pyridinylpyrazine (TPP) in Organic Light Emitting Diodes. Chemistry Letters, 2003, 32, 388-389.	0.7	7
569	Formation of MgAu alloy cathode by photolithography and its application to organic light-emitting diodes and organic field effect transistors. Electrical Engineering in Japan (English Translation of) Tj ETQq1 1 0.78 [,]	4 301 24 rgBT	Øverlock
570	Temperature-independent electron tunneling injection in tris (8-hydroxyquinoline) aluminum thin film from high-work-function gold electrode. Thin Solid Films, 2008, 516, 5069-5074.	0.8	7
571	Photophysical study of iridium complexes by absolute photoluminescence quantum yield measurements using an integrating sphere. Proceedings of SPIE, 2009, , .	0.8	7
572	Molecular Modification of 2,7-Diphenyl[1]benzothieno[3,2- <i>b</i>]benzothiophene (DPh-BTBT) with Diarylamino Substituents: From Crystalline Order to Amorphous State in Evaporated Thin Films. Chemistry Letters, 2009, 38, 420-421.	0.7	7
573	Mixing Effect of Gold and Silver Nanoparticles on Enhancement in Performance of Organic Thin-Film Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 122301.	0.8	7
574	Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy. AIP Advances, 2015, 5, 087124.	0.6	7
575	Effect of 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI) as well as bathocuproine (BCP) and Ag interlayer thickness on the performance of organic tandem solar cells. Synthetic Metals, 2016, 221, 179-185.	2.1	7
576	Synthesis and physical properties of brominated hexacene and hole-transfer properties of thin-film transistors. RSC Advances, 2018, 8, 13259-13265.	1.7	7

#	Article	IF	CITATIONS
577	Anisotropy of Thermal Diffusivity in Lead Halide Perovskite Layers Revealed by Thermal Grating Technique. Journal of Physical Chemistry C, 2019, 123, 14914-14920.	1.5	7
578	Kinetics of Excimer Electrogenerated Chemiluminescence of Pyrene and 1-Pyrenebutyricacid 2-Ethylhexylester in Acetonitrile and an Ionic Liquid, Triethylpentylphosphonium Bis(trifluoromethanesulfonyl)imide. Journal of Physical Chemistry B, 2019, 123, 10825-10836.	1.2	7
579	Highly effective organic light-emitting diodes containing thermally activated delayed fluorescence emitters with horizontal molecular orientation. RSC Advances, 2020, 10, 42897-42902.	1.7	7
580	Editorial: Recent Advances in Thermally Activated Delayed Fluorescence Materials. Frontiers in Chemistry, 2020, 8, 625910.	1.8	7
581	Surface Segregation of a Star-Shaped Polyhedral Oligomeric Silsesquioxane in a Polymer Matrix. Langmuir, 2020, 36, 9960-9966.	1.6	7
582	Direct Observation of Photoexcited Electron Dynamics in Organic Solids Exhibiting Thermally Activated Delayed Fluorescence via Timeâ€Resolved Photoelectron Emission Microscopy. Advanced Optical Materials, 2021, 9, 2100619.	3.6	7
583	Developing Efficient Dinuclear Pt(II) Complexes Based on the Triphenylamine Core for High-Efficiency Solution-Processed OLEDs. ACS Applied Materials & Interfaces, 2021, 13, 36020-36032.	4.0	7
584	Amplified spontaneous emission from oligo(<i>p</i> -phenylenevinylene) derivatives. Materials Advances, 2021, 2, 3906-3914.	2.6	7
585	Emission properties of thermally activated delayed fluorescence emitters: analysis based on a four-level model considering a higher triplet excited state. Journal of Photonics for Energy, 2018, 8, 1.	0.8	7
586	Electroluminescent Behavior of Oxadiazole Derivatives in Liquid-Crystalline Media. Molecular Crystals and Liquid Crystals, 2001, 365, 129-138.	0.3	6
587	Reversible Coloration Enhanced by Electrochemical Deposition of an Ultrathin Zinc Layer onto an Anodic Nanoporous Alumina Layer. Advanced Functional Materials, 2012, 22, 4195-4201.	7.8	6
588	Molecular Design of High-molecular-orientation Electron-transport Materials and Application to Organic Light-emitting Diodes. Chemistry Letters, 2013, 42, 651-653.	0.7	6
589	52.3: Understanding Extrinsic Degradation in Phosphorescent OLEDs. Digest of Technical Papers SID International Symposium, 2014, 45, 758-761.	0.1	6
590	Star-shaped and linear π-conjugated oligomers consisting of a tetrathienoanthracene core and multiple diketopyrrolopyrrole arms for organic solar cells. Beilstein Journal of Organic Chemistry, 2016, 12, 1459-1466.	1.3	6
591	Current Enhancement in Organic Films through Gap Compression by Cold and Hot Isostatic Pressing. Advanced Functional Materials, 2016, 26, 2940-2949.	7.8	6
592	Influence of the organic film thickness on the second order distributed feedback resonator properties of an organic semiconductor laser. Journal of Applied Physics, 2017, 121, .	1.1	6
593	Thermally activated delayed fluorescence of Bis(9,9-dimethyl-9,10-dihydroacridine) dibenzo[b,d]thiophene 5,5-dioxide derivatives for organic light-emitting diodes. Journal of Luminescence, 2017, 190, 485-491.	1.5	6
594	Molecular design of highly effective thermally activated delayed fluorescence emitters based on ortho-substituted donor-acceptor-donor pyridinecarbonitrile derivatives and their application for high-performance OLEDs. Dyes and Pigments, 2019, 171, 107775.	2.0	6

#	Article	IF	CITATIONS
595	Highly effective nicotinonitrile-derivatives-based thermally activated delayed fluorescence emitter with asymmetric molecular architecture for high-performance organic light-emitting diodes. Dyes and Pigments, 2020, 172, 107849.	2.0	6
596	A 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT-CN) transport layer with high electron mobility for thick organic light-emitting diodes. AIP Advances, 2020, 10, .	0.6	6
597	Organic photostimulated luminescence associated with persistent spin-correlated radical pairs. Communications Materials, 2021, 2, .	2.9	6
598	Energy transfer in (PEA) ₂ FA _{nâ^'1} Pb _n Br _{3n+1} quasi-2D perovskites. Journal of Materials Chemistry C, 2021, 9, 4782-4791.	2.7	6
599	Numerical Study of Triplet Dynamics in Organic Semiconductors Aimed for the Active Utilization of Triplets by TADF under Continuous-Wave Lasing. Journal of Physical Chemistry Letters, 2022, 13, 1323-1329.	2.1	6
600	Roll-Off Characteristics of Electroluminescence Efficiency of Organic Blue Electrophosphorescence Diodes. Japanese Journal of Applied Physics, 2008, 47, 7363-7365.	0.8	5
601	Evaluating Origin of Electron Traps in Tris(8-hydroxyquinoline) Aluminum Thin Films using Thermally Stimulated Current Technique. Japanese Journal of Applied Physics, 2008, 47, 1748-1752.	0.8	5
602	Dependence of polarization splitting on mode tuning in microcavities. Applied Physics Letters, 2009, 95, .	1.5	5
603	Preparation under High Humidity Conditions of Nanoporous Polymer Film with 80 nm Minimum Pore Size. Applied Physics Express, 2010, 3, 025201.	1.1	5
604	Two-dimensional orientation control of organic semiconducting amorphous films by mechanical brushing. Applied Physics Letters, 2011, 99, .	1.5	5
605	Microfluidic organic light emitting diode (OLED) using liquid organic semiconductors. , 2012, , .		5
606	Solar Cells: ï€ â€Extended Narrowâ€Bandgap Diketopyrrolopyrroleâ€Based Oligomers for Solutionâ€Processed Inverted Organic Solar Cells (Adv. Energy Mater. 17/2014). Advanced Energy Materials, 2014, 4, .	10.2	5
607	Organic Light-Emitting Diodes (OLEDs): Materials, Photophysics, and Device Physics. , 2015, , 43-73.		5
608	Blue Oleds: High-Efficiency Blue Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives (Adv. Mater. 23/2016). Advanced Materials, 2016, 28, 4625-4625.	11.1	5
609	Strong luminescence behavior of mono- and dimeric imidazoquinazolines: Swift OLED degradation under electrical current. Journal of Luminescence, 2017, 181, 252-260.	1.5	5
610	Long-Persistent Luminescence: Wide-Range Tuning and Enhancement of Organic Long-Persistent Luminescence Using Emitter Dopants (Adv. Mater. 38/2018). Advanced Materials, 2018, 30, 1870286.	11.1	5
611	Interplay Among Thermoelectric Properties, Atmospheric Stability, and Electronic Structures in Solutionâ€Đeposited Thin Films of P(Na _X [Niett]). Advanced Electronic Materials, 2020, 6, 1901172.	2.6	5
612	Advantages of naphthalene as a building block for organic solid state laser dyes: smaller energy gaps and enhanced stability. Journal of Materials Chemistry C, 2021, 9, 4112-4118.	2.7	5

#	Article	IF	CITATIONS
613	Special Articles on Organic and Inorganic Optical Materials. Relation between Molecular Structures of Dyes and Photovoltaic Properties in Tow-Layer Organic Solar Cells Using Phthalocyanines and Perylenetetracarboxylic Acid Derivatives Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1992, 1992, 1154-1161.	0.1	4
614	3,6-Diarylcarbazole Derivatives as a Host Material in Organic Electrophosphorescent Diodes. Japanese Journal of Applied Physics, 2010, 49, 080208.	0.8	4
615	Multi-color microfluidic organic light emitting device using electroluminescence and electrochemiluminescence. , 2013, , .		4
616	Introduction of F ₄ -TCNQ/MoO ₃ layers for thermoelectric devices based on pentacene. Chinese Physics B, 2014, 23, 098502.	0.7	4
617	In-Plane Anisotropic Molecular Orientation of Pentafluorene and Its Application to Linearly Polarized Electroluminescence. ACS Applied Materials & amp; Interfaces, 2017, 9, 27054-27061.	4.0	4
618	High-triplet-energy Bipolar Host Materials Based on Phosphine Oxide Derivatives for Efficient Sky-blue Thermally Activated Delayed Fluorescence Organic Light-emitting Diodes with Reduced Roll-off. Chemistry Letters, 2019, 48, 1225-1228.	0.7	4
619	Film transfer of structured organo-lead-halide perovskite for low-cost lasing applications. Applied Physics Letters, 2019, 115, .	1.5	4
620	Fluorescence lifetime elongation of thermally activated delayed fluorescence 4CzIPN molecules with encapsulation into zeolitic imidazole frameworks ZIF-11. Optical Materials Express, 2019, 9, 1150.	1.6	4
621	Device Stability: The Relation of Phase-Transition Effects and Thermal Stability of Planar Perovskite Solar Cells (Adv. Sci. 1/2019). Advanced Science, 2019, 6, 1970004.	5.6	4
622	Synthesis and photochromic behaviour of a series of benzopyrans bearing an N-phenyl-carbazole moiety: photochromism control by the steric effect. Photochemical and Photobiological Sciences, 2020, 19, 1344-1355.	1.6	4
623	Tetrabenzo[<i>a</i> , <i>c</i>]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angewandte Chemie, 2021, 133, 19513-19522.	1.6	4
624	Low Light Amplification Threshold and Reduced Efficiency Rollâ€Off in Thick Emissive Layer OLEDs from a Diketopyrrolopyrrole Derivative. Macromolecular Rapid Communications, 2022, 43, e2200115.	2.0	4
625	Cibalackrot Dendrimers for Hyperfluorescent Organic Lightâ€Emitting Diodes. Macromolecular Rapid Communications, 2022, 43, e2200118.	2.0	4
626	Improved Performance of Perovskite Solar Cells by Suppressing the Energy-Level Shift of the PEDOT:PSS Hole Transport Layer. ACS Applied Energy Materials, 2021, 4, 14590-14598.	2.5	4
627	Impact of excitonic and photonic loss mechanisms on the threshold and slope efficiency of organic semiconductor lasers. Japanese Journal of Applied Physics, 2022, 61, 074003.	0.8	4
628	Formation of a MgAu alloy Cathode by Photolithography and the Application for Organic Light-Emitting Diodes and Organic Field-effect Transistors. IEEJ Transactions on Electronics, Information and Systems, 2004, 124, 1219-1223.	0.1	3
629	Preparation of Micropatterned Organic Light Emitting Diodes by Self-Organization. Molecular Crystals and Liquid Crystals, 2006, 444, 87-94.	0.4	3
630	Novel Electron-Transporting Carbazolylphenylquinolines for Phosphorescent Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2006, 45, 9228-9230.	0.8	3

#	Article	IF	CITATIONS
631	Formation of Organic Nanodots with a Minimum Diameter of 40 nm Using Conventional Vacuum Vapor Deposition. Applied Physics Express, 2010, 3, 055201.	1.1	3
632	Organic Electrodes Consisting of Dianthratetrathiafulvalene and Fullerene and Their Application in Organic Field Effect Transistors. Japanese Journal of Applied Physics, 2011, 50, 050202.	0.8	3
633	Origin of external quantum efficiency degradation in organic light-emitting diodes with a DC magnetron sputtered cathode. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	0.6	3
634	Diindenoperylene (DIP) concentration dependent photovoltaic performance and dielectric properties for mixed heterojunctions. Synthetic Metals, 2017, 233, 35-40.	2.1	3
635	Discussion on hole traps of amorphous films of <i>N</i> , <i>N</i> ′-di(1-naphthyl)- <i>N</i> , <i>N</i> ′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (<i>Î:</i>	⊧- <b i⊳\$;TjE	TQ q 1 1 0.784
636	Nanoscale Electronic Properties of Triplet-State-Engineered Halide Perovskites. Journal of Physical Chemistry C, 2020, 124, 14811-14817.	1.5	3
637	Correlated Triplet Pair Formation Activated by Geometry Relaxation in Directly Linked Tetracene Dimer (5,5′-Bitetracene). ACS Omega, 2021, 6, 2638-2643.	1.6	3
638	Photoactive Organic/Inorganic Hybrid Materials with Nanosegregated Donor–Acceptor Arrays. Angewandte Chemie, 2021, 133, 8500-8505.	1.6	3
639	Spin-relaxation Process of Excited Triplet States of Ir(ppy)3. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 181-186.	0.1	2
640	Features of Conductivity and Electroluminescence of New Poly (9,9-Dioctylfluorenyl-2,7-Diyl) – End Capped With Polyhedral Oligomeric Silsesquioxanes. Molecular Crystals and Liquid Crystals, 2007, 467, 303-309.	0.4	2
641	Low-Threshold Blue Emission from First-Order Organic DFB Laser Using 2,7-bis[4-(N-carbazole)phenylvinyl]-9,9′-Spirobifluorene as Active Gain Medium. Molecular Crystals and Liquid Crystals, 2009, 504, 1-8.	0.4	2
642	Formation of nanostructured donor/acceptor interfaces and their application to organic photovoltaic cells. Thin Solid Films, 2012, 522, 357-360.	0.8	2
643	Amplified Spontaneous Emission: Amplified Spontaneous Emission and Electroluminescence from Thiophene/Phenylene Coâ€Oligomerâ€Doped <i>p</i> â€bis(<i>p</i> â€Styrylstyryl)Benzene Crystals (Advancec	l) Tj æð QqI	l 1 0.7 84314
644	Variable multi-color microfluidic organic light emitting device based on mixing of electrochemiluminescence solutions. , 2013, , .		2
645	Efficient Persistent Room Temperature Phosphorescence in Organic Materials. Kobunshi Ronbunshu, 2013, 70, 623-636.	0.2	2
646	100 μmâ€Order Patterning of Organic Semiconductor Layers Using a Thermally Converted Precursor Technique and its Application to Organic Light Emitting Diodes. Advanced Optical Materials, 2014, 2, 110-114.	3.6	2
647	Microfluidic electrochemiluminescence (ECL) integrated flow cell for portable fluorescence detection. , 2014, , .		2
648	Near infrared photo-detector using self-assembled formation of organic crystalline nanopillar		2

arrays., 2014, , .

#	Article	IF	CITATIONS
649	Influence of the atmosphere on organic–organic interfacial layers and deterioration in organic lightâ€emitting diodes. Journal of the Society for Information Display, 2015, 23, 129-137.	0.8	2
650	Role of intermediate state in the excited state dynamics of highly efficient TADF molecules. Proceedings of SPIE, 2016, , .	0.8	2
651	Blue OLEDs: Controlling Synergistic Oxidation Processes for Efficient and Stable Blue Thermally Activated Delayed Fluorescence Devices (Adv. Mater. 35/2016). Advanced Materials, 2016, 28, 7807-7807.	11.1	2
652	24-1: Device Stability Enhancement In TADF OLEDs. Digest of Technical Papers SID International Symposium, 2016, 47, 290-293.	0.1	2
653	Tetrathienoanthracene-based π-Extended Narrow-band-gap Molecules: Synthesis, Physicochemical, and Photovoltaic Properties. Chemistry Letters, 2017, 46, 29-31.	0.7	2
654	3â€3: Influence of Vacuum Chamber Impurities on OLED Degradation. Digest of Technical Papers SID International Symposium, 2017, 48, 9-12.	0.1	2
655	Organic Longâ€Persistent Luminescence: Organic Longâ€Persistent Luminescence from a Flexible and Transparent Doped Polymer (Adv. Mater. 45/2018). Advanced Materials, 2018, 30, 1870341.	11.1	2
656	Visual Understanding of Vibronic Coupling and Quantitative Rate Expression for Singlet Fission in Molecular Aggregates. Bulletin of the Chemical Society of Japan, 2020, 93, 1305-1313.	2.0	2
657	Organic Longâ€Persistent Luminescence: Many Exciplex Systems Exhibit Organic Longâ€Persistent Luminescence (Adv. Funct. Mater. 22/2020). Advanced Functional Materials, 2020, 30, 2070138.	7.8	2
658	Ambipolar Tetraphenylpyrene (TPPy) Single-Crystal Field-Effect Transistor with Symmetric and Asymmetric Electrodes. Advances in Materials Research, 2008, , 103-110.	0.2	2
659	Horizontal Molecular Orientation in Vacuum-Deposited Organic Amorphous Films. Green Energy and Technology, 2010, , 137-151.	0.4	2
660	Special Section Guest Editorial: Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. Journal of Photonics for Energy, 2018, 8, 1.	0.8	2
661	Organic Electrodes Consisting of Dianthratetrathiafulvalene and Fullerene and Their Application in Organic Field Effect Transistors. Japanese Journal of Applied Physics, 2011, 50, 050202.	0.8	2
662	Electroluminescence in Vacuum-Deposited Organic Thin Films. Springer Proceedings in Physics, 1989, , 358-361.	0.1	2
663	Spiroconjugated Tetraaminospirenes as Donors in Colorâ€Tunable Chargeâ€Transfer Emitters with Donorâ€Acceptor Structure. Chemistry - A European Journal, 2022, 28, .	1.7	2
664	High-Efficiency Carrier Injection Characteristics of Dixanthene Derivatives in Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2005, 44, 410-411.	0.8	1
665	Injection of current densities over kA/cm2in organic thin films and investigation of charge-carrier transport mechanisms in current density region between nA/cm2and kA/cm2. , 2006, , .		1
666	41.1: <i>Invited Paper</i> : Molecular Design of Organic Semiconductors Aiming for High Performance OLED, OFET and Organic Laser Diode. Digest of Technical Papers SID International Symposium, 2008, 39, 604-608.	0.1	1

#	Article	IF	CITATIONS
667	Material Design of Organic Semiconductors for Light Emitting Organic Field-effect Transistors and Their Device Characteristics. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 493-503.	0.0	1
668	Photoluminescence Characteristics of Organic Host Materials with Wide Energy Gaps for Organic Electrophosphorescent Devices. Japanese Journal of Applied Physics, 2010, 49, 050205.	0.8	1
669	High-efficiency organic light-emitting diodes with blue fluorescent emitter. , 2014, , .		1
670	High efficiency organic light-emitting diodes with conventional fluorescent emitters. , 2014, , .		1
671	Pâ€164L: <i>Lateâ€News Poster</i> : The Study of Film Formation Process by Electrospray Method to Manufacture High Productivity Organic Lightâ€Emitting Diode Devices. Digest of Technical Papers SID International Symposium, 2014, 45, 1593-1596.	0.1	1
672	[Paper] Laser-Induced Micro-Patterning of Organic Semiconductor Layers for Use in Organic Light-Emitting Diode Displays. ITE Transactions on Media Technology and Applications, 2015, 3, 143-148.	0.3	1
673	Flexible organic light emitting diode ribbons using three liquid organic semiconductors. , 2016, , .		1
674	Fabrication of bottom-emitting organic light-emitting diode panels interconnected with encapsulation substrate by Au Au flip-chip bonding and capillary-driven filling process. Microelectronic Engineering, 2016, 161, 94-97.	1.1	1
675	Deep-blue light emission with a wide-bandgap naphthalene-derivative liquid organic semiconductor host. , 2017, , .		1
676	Field-Effect Transistors: High Performance p- and n-Type Light-Emitting Field-Effect Transistors Employing Thermally Activated Delayed Fluorescence (Adv. Funct. Mater. 28/2018). Advanced Functional Materials, 2018, 28, 1870193.	7.8	1
677	Molecular Orientation: Simultaneous Edgeâ€on to Faceâ€on Reorientation and 1D Alignment of Small ï€â€€onjugated Molecules Using Roomâ€Temperature Mechanical Rubbing (Adv. Funct. Mater. 19/2018). Advanced Functional Materials, 2018, 28, 1870127.	7.8	1
678	76â€3: Induction Heating Evaporator for the Fabrication of OLEDs. Digest of Technical Papers SID International Symposium, 2019, 50, 1087-1090.	0.1	1
679	55â€4: Novel Methodology for Reproducibility of OLED Lifetimes and Identification of Killer Impurities. Digest of Technical Papers SID International Symposium, 2020, 51, 822-825.	0.1	1
680	The effect of current density–voltage measurement conditions on the operational stability of hybrid perovskite solar cells. Applied Physics Letters, 2020, 117, .	1.5	1
681	Pâ€230: <i>Lateâ€Newsâ€Poster:</i> Evaluations of Lithiumâ€Fluoride Behavior in OLEDs by Means of Cyclicâ€Displacement Currentâ€Measurement Method. Digest of Technical Papers SID International Symposium, 2020, 51, 2107-2110.	0.1	1
682	Synthesis and Characterization of 5,5 \hat{a} € ² -Bitetracene. Chemistry Letters, 2021, 50, 800-803.	0.7	1
683	Pâ€116: TADF OLED Emission Zone and Stability Analysis with Water Exposure to Different Layers During Deposition. Digest of Technical Papers SID International Symposium, 2021, 52, 1477-1481.	0.1	1
684	19â€1: <i>Invited Paper:</i> Stable Pureâ€Blue Hyperfluorescence OLEDs. Digest of Technical Papers SID International Symposium, 2021, 52, 224-227.	0.1	1

#	Article	IF	CITATIONS
685	Synthesis and Characterization of Hexakis(4-pyridylethynyl)benzene and Hexakis(5-pyrimidylethynyl)benzene. Heterocycles, 2004, 63, 1537.	0.4	1
686	Synthesis, crystal structure, tropicity and charge transport properties of diindenothienothiophene derivatives. Journal of Materials Chemistry C, 0, , .	2.7	1
687	Thermally activated delayed fluorescence poly(dendrimer)s – detrapping excitons for reverse intersystem crossing. Journal of Materials Chemistry C, 2022, 10, 8109-8124.	2.7	1
688	Efficient Perovskite Lightâ€Emitting Diodes with a Siloxaneâ€Blended Organic Hole Transport Layer. Advanced Photonics Research, 2022, 3, .	1.7	1
689	Balanced electron and hole injection and transport in OLEDs by using transparent electrodes. Japanese Journal of Applied Physics, 2022, 61, 088002.	0.8	1
690	Specific Conductivity Dependence on Diameter of Submicro-Sized Polythiophene Fibrils. Molecular Crystals and Liquid Crystals, 1998, 322, 85-90.	0.3	0
691	Efficient organic light emitting diodes and photodetectors. , 0, , .		Ο
692	White Electrophosphorescent Devices having Multi-organic Phosphors Doped Layers. IEEJ Transactions on Fundamentals and Materials, 2004, 124, 1053-1058.	0.2	0
693	Phosphorescence Quantum Efficiency and Intermolecular Interaction of Iridium(III) Complexes in Co-Deposited Films with Organic Semiconducting Hosts. Materials Research Society Symposia Proceedings, 2004, 846, DD4.5.1.	0.1	Ο
694	Photoluminescence Characteristics of Dendrimers Containing (tris (8-hydroxyquinoline) aluminum) as a Core Unit. Kobunshi Ronbunshu, 2006, 63, 675-680.	0.2	0
695	Organic Blue Electrophorescence Using a Cyclic Siloxane Compound as a Host Material. Kobunshi Ronbunshu, 2006, 63, 686-690.	0.2	Ο
696	Organic light emitting devices from OLED to organic laser diode. , 2007, , .		0
697	Frontier of organic light emitting devices. , 2007, , .		Ο
698	Durable & printable blue-violet DFB solid-state dye lasers using spirobifluorene derivatives. , 2009, , .		0
699	A distributed-feedback organic waveguide blue laser using spirobifluorene derivatives. , 2010, , .		Ο
700	Delayed Fluorescence by Reverse Intersystem Crossing and Application to Organic Light-Emitting Diodes. , 2012, , .		0
701	P-152L:Late-News Poster: Self-Refreshable Lighting Device Using Liquid OLED Material. Digest of Technical Papers SID International Symposium, 2012, 43, 1542-1543.	0.1	0
702	Organic Electronics: Bifunctional Starâ€Burst Amorphous Molecular Materials for OLEDs: Achieving Highly Efficient Solidâ€State Luminescence and Carrier Transport Induced by Spontaneous Molecular Orientation (Adv. Mater. 19/2013). Advanced Materials, 2013, 25, 2634-2634.	11.1	0

Chihaya Adachi

#	Article	IF	CITATIONS
703	Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative. , 2013, , .		Ο
704	High Performance Organic Light-emitting Diodes Based on Thermally-activated Delayed Fluorescence Materials. Journal of the Vacuum Society of Japan, 2015, 58, 73-78.	0.3	0
705	Large-Area Deposition Technology of High Purity Organic Thin Film by Gas Flow Deposition. Journal of the Vacuum Society of Japan, 2015, 58, 79-85.	0.3	Ο
706	Organic light-emitting diodes: multiscale charge transport simulation and fabrication of new thermally activated delayed fluorescence (TADF) materials. , 2015, , .		0
707	Degradation mechanism of planar perovskite solar cells (Presentation Recording). , 2015, , .		0
708	Quasi continuous-wave lasing in organic thin-film semiconductors (Conference Presentation). , 2016, ,		0
709	Tunable OLEDs: Color Tuning of Avobenzone Boron Difluoride as an Emitter to Achieve Fullâ€Color Emission (Adv. Funct. Mater. 37/2016). Advanced Functional Materials, 2016, 26, 6847-6847.	7.8	Ο
710	Electroluminescence: Confinement of Long-Lived Triplet Excitons in Organic Semiconducting Host-Guest Systems (Adv. Funct. Mater. 40/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
711	Highly efficient organic light-emitting diodes with completely oriented delayed fluorescent emitters. , 2017, , .		Ο
712	THz absorption measurement and calculation of organic thermally activated delayed fluorescence materials. , 2017, , .		0
713	Organic LEDs: Ultrahigh Power Efficiency Thermally Activated Delayed Fluorescent OLEDs by the Strategic Use of Electron-Transport Materials (Advanced Optical Materials 17/2018). Advanced Optical Materials, 2018, 6, 1870067.	3.6	0
714	Efficient and stable perovskite-based optoelectronic devices. , 2018, , .		0
715	Titelbild: Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency (Angew. Chem. 41/2019). Angewandte Chemie, 2019, 131, 14529-14529.	1.6	0
716	INFRARED DETECTOR USING ORGANIC NANO-PILLAR ARRAYS. , 2019, , .		0
717	33â€4: Invited Paper: A Chemical Structure Approach Enhancing Light Outcoupling of Dopant OLEDs and Internal Quantum Efficiency of Nonâ€Dopant OLEDs Having Bluish TADF Emitters. Digest of Technical Papers SID International Symposium, 2019, 50, 470-473.	0.1	Ο
718	Organic Lightâ€Emitting Diode: Effect of Carrier Balance on Device Degradation of Organic Lightâ€Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitters (Adv. Electron.) Tj ETQq0 0	0 2g&T /C)vedock 10 Tf
719	58â€4: Efficient Cadmiumâ€Free Quantum Dot Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2020, 51, 870-873.	0.1	0

⁷²⁰Partial Modification of Electron-withdrawing Groups in Thermally-activated Delayed Fluorescence
Materials Aimed to Improve Efficiency and Stability. Chemistry Letters, 2020, 49, 1189-1193.0.70

#	Article	IF	CITATIONS
721	Organic Laser Dyes: An Organic Laser Dye having a Small Singletâ€Triplet Energy Gap Makes the Selection of a Host Material Easier (Adv. Funct. Mater. 30/2020). Advanced Functional Materials, 2020, 30, 2070204.	7.8	0
722	Organic Semiconductor Lasers: Lasing Operation under Longâ€Pulse Excitation in Solutionâ€Processed Organic Gain Medium: Toward CW Lasing in Organic Semiconductors (Advanced Optical Materials) Tj ETQq0 0	0 rg₿₹ /O\	verlock 10 Tf 5
723	From 50 years of OLED Development to the Future. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 266-268.	0.0	Ο
724	Innentitelbild: An Elementâ€Substituted Cyclobutadiene Exhibiting Highâ€Energy Blue Phosphorescence (Angew. Chem. 40/2021). Angewandte Chemie, 2021, 133, 21766-21766.	1.6	0
725	Recent Progress on Organic Semiconductor Laser Molecules. Vacuum and Surface Science, 2021, 64, 4-9.	0.0	Ο
726	Fundamentals of Organic Electroluminescent Devices. Journal of the Institute of Electrical Engineers of Japan, 2005, 125, 649-652.	0.0	0
727	Bipolar Characteristics of an Organic Light-Emitting Filed Effect Transistor Using a TPTPT and NTCDA Co-Deposited Layer. IEEJ Transactions on Electronics, Information and Systems, 2006, 126, 1107-1111.	0.1	0
728	Lowering the Driving Voltage of Organic Light Emitting Diodes by Chemical Doping. Hyomen Kagaku, 2007, 28, 236-241.	0.0	0
729	Material and device structure design aiming for realization of organic semiconductor laser. The Review of Laser Engineering, 2007, 35, 27-28.	0.0	0
730	Clarification of Charge Separation and Transport Behavior at Two-dimensional Charge Sheet of Organic Donor/Acceptor Heterointerfaces. IEEJ Transactions on Fundamentals and Materials, 2010, 130, 155-160.	0.2	0
731	MNM-4A-5 Thermoelectric thin film deposition on a porous alumina. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2010, 2010.2, 179-180.	0.0	0
732	Degradation mechanism of perovskite solar cells under standard test conditions. , 0, , .		0
733	Detrimental Effect of Excess PbI2 on the Stability of Perovskite Solar Cells. , 0, , .		0
734	Next-Generation Organic Light-Emitting Diode Architectures With Metal Halide Perovskites. , 2020, , .		0
735	Metal Halide Perovskites for Next-Generation LED and Transistor Applications. , 2020, , .		0
736	Recent progress on blue hyperfluorescence OLEDs. , 0, , .		0
737	Highly efficient pixelated near-infrared OLED light source. , 2022, , .		0