
Curtis Strobeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5349281/publications.pdf Version: 2024-02-01

CLIDTIS STROBECK

#	Article	IF	CITATIONS
1	Population fragmentation and interâ€ecosystem movements of grizzly bears in western Canada and the northern United States. Wildlife Monographs, 2012, 180, 1-46.	3.0	150
2	Arctic fox <i>Vulpes lagopus</i> population structure: circumpolar patterns and processes. Oikos, 2011, 120, 873-885.	2.7	28
3	History and fate of a small isolated population of Weddell seals at White Island, Antarctica. Conservation Genetics, 2010, 11, 721-735.	1.5	20
4	Multiple fossil calibrations, nuclear loci and mitochondrial genomes provide new insight into biogeography and divergence timing for true seals (Phocidae, Pinnipedia). Journal of Biogeography, 2010, 37, 814-829.	3.0	93
5	Multiple markers and multiple individuals refine true seal phylogeny and bring molecules and morphology back in line. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1065-1070.	2.6	63
6	Pollen-mediated gene flow from transgenic safflower (<i>Carthamustinctorius</i> L.) intended for plant molecular farming to conventional safflower. Environmental Biosafety Research, 2009, 8, 19-32.	1.1	13
7	Northwest passages: conservation genetics of Arctic Island wolves. Conservation Genetics, 2008, 9, 879-892.	1.5	23
8	Population structure of iceâ€breeding seals. Molecular Ecology, 2008, 17, 3078-3094.	3.9	55
9	Genetic Variation and Population Structure in Big Brown Bats (<i>Eptesicus fuscus</i>): Is Female Dispersal Important?. Journal of Mammalogy, 2008, 89, 1411-1420.	1.3	35
10	Novel phylogeny of the raccoon family (Procyonidae: Carnivora) based on nuclear and mitochondrial DNA evidence. Molecular Phylogenetics and Evolution, 2007, 43, 1171-1177.	2.7	55
11	Fine-scale genetic structure and dispersal in Canada lynx (Lynx canadensis) within Alberta, Canada. Canadian Journal of Zoology, 2006, 84, 1112-1119.	1.0	19
12	Molecular phylogeny of the Arctoidea (Carnivora): Effect of missing data on supertree and supermatrix analyses of multiple gene data sets. Molecular Phylogenetics and Evolution, 2006, 41, 165-181.	2.7	155
13	Effects of a recent founding event and intrinsic population dynamics on genetic diversity in an ungulate population. Conservation Genetics, 2006, 6, 905-916.	1.5	26
14	A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes. Molecular Phylogenetics and Evolution, 2005, 37, 192-201.	2.7	85
15	Isolation of 18 polymorphic microsatellite loci from the North American red squirrel, Tamiasciurus hudsonicus (Sciuridae, Rodentia), and their cross-utility in other species. Molecular Ecology Notes, 2005, 5, 650-653.	1.7	38
16	Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Molecular Ecology, 2005, 14, 1897-1909.	3.9	115
17	GENOTYPING OF PSEUDOHERMAPHRODITE POLAR BEARS IN NUNAVUT AND ADVANCES IN DNA SEXING TECHNIQUES. Journal of Mammalogy, 2005, 86, 160-169.	1.3	15
18	Among- and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 553-560.	2.6	121

116

#	Article	IF	CITATIONS
19	Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2409-2416.	2.6	149
20	SAMPLING DESIGN AND BIAS IN DNA-BASED CAPTURE–MARK–RECAPTURE POPULATION AND DENSITY ESTIMATES OF GRIZZLY BEARS. Journal of Wildlife Management, 2004, 68, 457-469.	1.8	94
21	A phylogeny of the extant Phocidae inferred from complete mitochondrial DNA coding regions. Molecular Phylogenetics and Evolution, 2004, 33, 363-377.	2.7	61
22	GENETIC STRUCTURE OF SENSITIVE AND ENDANGERED NORTHWESTERN BADGER POPULATIONS (TAXIDEA) Tj E	TQq0000	rgBT /Overlo
23	Gender-specific dispersal distances of grizzly bears estimated by genetic analysis. Canadian Journal of Zoology, 2004, 82, 1108-1118.	1.0	125
24	Title is missing!. Conservation Genetics, 2003, 4, 179-188.	1.5	37
25	Undesirable evolutionary consequences of trophy hunting. Nature, 2003, 426, 655-658.	27.8	666
26	Genetic homogeneity of Canadian mainland marten populations underscores the distinctiveness of Newfoundland pine martens (Martes americana atrata). Canadian Journal of Zoology, 2003, 81, 57-66.	1.0	44
27	Age-dependent sexual selection in bighorn rams. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 165-172.	2.6	276
28	Conserved Primers for Rapid Sequencing of the Complete Mitochondrial Genome from Carnivores, Applied to Three Species of Bears. Molecular Biology and Evolution, 2002, 19, 357-361.	8.9	58
29	Reproductive success in wood bison (Bison bison athabascae) established using molecular techniques. Canadian Journal of Zoology, 2002, 80, 1537-1548.	1.0	28
30	CONNECTIVITY OF PERIPHERAL AND CORE POPULATIONS OF NORTH AMERICAN WOLVERINES. Journal of Mammalogy, 2002, 83, 1141-1150.	1.3	59
31	Isolation of novel microsatellite loci in the Rocky Mountain apollo butterfly, Parnassius smintheus. Hereditas, 2002, 136, 247-250.	1.4	22
32	A Phylogenetic Comparison of Red Deer and Wapiti Using Mitochondrial DNA. Molecular Phylogenetics and Evolution, 2002, 22, 342-356.	2.7	66
33	Characterization of dinucleotide microsatellite loci in big brown bats (Eptesicus fuscus), and their use in other North American vespertilionid bats. Molecular Ecology Notes, 2002, 2, 167-169.	1.7	28
34	Dinucleotide microsatellite markers from the Antarctic seals and their use in other Pinnipeds. Molecular Ecology Notes, 2002, 2, 203-208.	1.7	49
35	MOLECULAR EVIDENCE FOR TWINNING IN WEDDELL SEALS (LEPTONYCHOTES WEDDELLII). Journal of Mammalogy, 2001, 82, 491-499.	1.3	27

Prey specialization may influence patterns of gene flow in wolves of the Canadian Northwest.
 Molecular Ecology, 2001, 10, 2787-2798.

CURTIS STROBECK

#	Article	IF	CITATIONS
37	Genetic structure of North American wolverine (Gulo gulo) populations. Molecular Ecology, 2001, 10, 337-347.	3.9	94
38	Genetic variation and structure of fisher (Martes pennanti) populations across North America. Molecular Ecology, 2001, 10, 2341-2347.	3.9	40
39	Characterization of microsatellite loci in bannertailed and giant kangaroo rats, Dipodomys spectabilis and Dipodomys ingens. Molecular Ecology, 2000, 9, 642-644.	3.9	16
40	Microsatellite analysis of North American wapiti (Cervus elaphus) populations. Molecular Ecology, 2000, 9, 1561-1576.	3.9	68
41	Development and characterization of microsatellite loci from lynx (Lynx canadensis), and their use in other felids. Molecular Ecology, 2000, 9, 2197-2199.	3.9	33
42	Characterization of microsatellite loci in northern flying squirrels (Glaucomys sabrinus). Molecular Ecology, 2000, 9, 826-827.	3.9	17
43	Estimating Population Size of Grizzly Bears Using Hair Capture, DNA Profiling, and Mark-Recapture Analysis. Journal of Wildlife Management, 2000, 64, 183.	1.8	231
44	Microsatellite analysis of North American pine marten (<i>Martes americana</i>) populations from the Yukon and Northwest Territories. Canadian Journal of Zoology, 2000, 78, 1150-1157.	1.0	23
45	Genetic relationships of grizzly bears (Ursus arctos) in the Prudhoe Bay region of Alaska: inference from microsatellite DNA, mitochondrial DNA, and field observations. , 1999, 90, 622-628.		24
46	Evolutionary applications of MIRs and SINEs. Animal Genetics, 1999, 30, 47-51.	1.7	7
47	The isolation and characterization of microsatellite loci in bison, and their usefulness in other artiodactyls. Animal Genetics, 1999, 30, 226-227.	1.7	14
48	Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Molecular Ecology, 1999, 8, 1481-1495.	3.9	185
49	Genetic structure of the world's polar bear populations. Molecular Ecology, 1999, 8, 1571-1584.	3.9	227
50	Genetic variation within and relatedness among wood and plains bison populations. Genome, 1999, 42, 483-496.	2.0	11
51	Phylogeny of Wapiti, Red Deer, Sika Deer, and Other North American Cervids as Determined from Mitochondrial DNA. Molecular Phylogenetics and Evolution, 1998, 10, 249-258.	2.7	74
52	Gene flow between insular, coastal and interior populations of brown bears in Alaska. Molecular Ecology, 1998, 7, 1283-1292.	3.9	297
53	Genetic signatures of interpopulation dispersal. Trends in Ecology and Evolution, 1998, 13, 43-44.	8.7	318
54	Isolation, variability, and crossâ€species amplification of polymorphic microsatellite loci in the family Mustelidae. Molecular Ecology, 1998, 7, 1776-1778.	3.9	143

CURTIS STROBECK

55Direct Amplification of Microsatellite Alleles from Sonicated Goldfish Sperm. BioTechniques, 1998, 24, 407-410.1.856Variation in Cenetic Diversity across the Range of North American Brown Bears. Conservation Biology, 1998, 12, 418-429.4.757Phylogenetic status of North American wapiti(Cervus elaphus) subspecies. Canadian Journal of Zoology, 1998, 76, 998-1010.1.058Characterization of microsatellite loci in caribou Rangifer tarandus , and their use in other artiodactyls. Molecular Ecology, 1997, 6, 697-699.3.959Microsatellite loci in Columbian ground squirrels Spermophilus columbianus. Molecular Ecology, 1997, 6, 493-495.3.9	0 220 4 228 91 666
36 Biology, 1998, 12, 418-429. 4.7 57 Phylogenetic status of North American wapiti(Cervus elaphus) subspecies. Canadian Journal of Zoology, 1998, 76, 998-1010. 1.0 58 Characterization of microsatellite loci in caribou Rangifer tarandus , and their use in other artiodactyls. Molecular Ecology, 1997, 6, 697-699. 3.9 50 Microsatellite loci in Columbian ground squirrels Spermophilus columbianus. Molecular Ecology, 3.0	4 228 91 66
57Zoology, 1998, 76, 998-1010.1.058Characterization of microsatellite loci in caribou Rangifer tarandus , and their use in other artiodactyls. Molecular Ecology, 1997, 6, 697-699.3.950Microsatellite loci in Columbian ground squirrels Spermophilus columbianus. Molecular Ecology, and their use in columbianus. Molecular Ecology, and their use in columbianus. Molecular Ecology, and their use in columbianus.	228 91 66
 ⁵⁸ artiodactyls. Molecular Ecology, 1997, 6, 697-699. Microsatellite loci in Columbian ground squirrels Spermophilus columbianus. Molecular Ecology, 	91 66
⁵⁹ Microsatellite loci in Columbian ground squirrels Spermophilus columbianus. Molecular Ecology, 1997, 6, 493-495.	66
 Fluctuating asymmetry and developmental stability: heritability of observable variation vs. heritability of inferred cause. Journal of Evolutionary Biology, 1997, 10, 39. 	220
An Empirical Evaluation of Genetic Distance Statistics Using Microsatellite Data From Bear (Ursidae) 2.9 Populations. Genetics, 1997, 147, 1943-1957.	330
62 Mitochondrial DNA and the phylogeography of Newfoundland black bears. Canadian Journal of 1.0 Zoology, 1996, 74, 192-196.	68
Genetic relationships among North American bison populations. Canadian Journal of Zoology, 1996, 74, 738-749.	15
64 Bovine mtDNA Discovered in North American Bison Populations. Conservation Biology, 1995, 9, 1638. 4.7	35
The Use of Cytochrome b Sequence Variation in Estimation of Phylogeny in the Vireonidae. Condor, 1.6 1994, 96, 1037-1054.	42
66 Structure of the intergenic spacer region from the ribosomal RNA gene family of white spruce (Picea) Tj ETQq0 0 0 rgBT /Ove	erlock 10 Tf
 Restriction fragment polymorphisms in the rDNA region among seven species of Alnus and Betula papyrifera. Plant and Soil, 1989, 118, 231-240. 	15
68Evolution of the Ribosomal DNA Spacers of <i>Drosophila melanogaster</i> 2.968Variation on <i>X</i> Chromosomes. Genetics, 1987, 116, 225-232.	61
69Average Number of Nucleotide Differences in a Sample From a Single Subpopulation: A Test for Population Subdivision. Genetics, 1987, 117, 149-153.2.9	235
70 The Population Genetics of Somatic Mutation in Plants. American Naturalist, 1985, 126, 52-62. 2.1	88

71	Sister chromatid exchange and the evolution of rDNA spacer length. Journal of Theoretical Biology, 1985, 116, 625-636.	1.7	25

72Estimation of the neutral mutation rate in a finite population from DNA sequence data. Theoretical
Population Biology, 1983, 24, 160-172.1.117

CURTIS STROBECK

#	Article	IF	CITATIONS
73	EXPECTED LINKAGE DISEQUILIBRIUM FOR A NEUTRAL LOCUS LINKED TO A CHROMOSOMAL ARRANGEMENT. Genetics, 1983, 103, 545-555.	2.9	132
74	ls intragenic recombination a factor in the maintenance of genetic variation in natural populations?. Nature, 1979, 277, 383-384.	27.8	27
75	Haploid Selection with n Alleles in m Niches. American Naturalist, 1979, 113, 439-444.	2.1	25
76	PARTIAL SELFING AND LINKAGE: THE EFFECT OF A HETEROTIC LOCUS ON A NEUTRAL LOCUS. Genetics, 1979, 92, 305-315.	2.9	34
77	THE EFFECT OF INTRAGENIC RECOMBINATION ON THE NUMBER OF ALLELES IN A FINITE POPULATION. Genetics, 1978, 88, 829-844.	2.9	73
78	The geometry of random drift I. Stochastic distance and diffusion. Advances in Applied Probability, 1977, 9, 238-249.	0.7	25
79	The algebra of recombination. Advances in Applied Probability, 1976, 8, 27-29.	0.7	0
80	Selection in a Fine-Grained Environment. American Naturalist, 1975, 109, 419-425.	2.1	39
81	The two locus model by different recombination values in the two sexes. Advances in Applied Probability, 1975, 7, 23-26.	0.7	3
82	Necessary and Sufficient Conditions for Multiple-Niche Polymorphism in Haploids. American Naturalist, 1975, 109, 233-235.	2.1	36
83	Outcrossing and heterozygosity. Advances in Applied Probability, 1974, 6, 18-20.	0.7	0
84	Sufficient Conditions for Polymorphism with N Niches and M Mating Groups. American Naturalist, 1974, 108, 152-156.	2.1	40
85	THE TWO-LOCUS MODEL WITH SEX DIFFERENCES IN RECOMBINATION. Genetics, 1974, 78, 791-797.	2.9	2
86	The three locus model with multiplicative fitness values. Genetical Research, 1973, 22, 195-200.	0.9	7
87	N Species Competition. Ecology, 1973, 54, 650-654.	3.2	111
88	HETEROZYGOSITY IN PIN-THRUM PLANTS OR WITH PARTIAL SEX LINKAGE. Genetics, 1972, 72, 667-678.	2.9	9