List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5348948/publications.pdf Version: 2024-02-01

HUNCLEE

#	Article	IF	CITATIONS
1	Methods of studying soil microbial diversity. Journal of Microbiological Methods, 2004, 58, 169-188.	0.7	654
2	Screening of yeasts for production of xylitol fromd-xylose and some factors which affect xylitol yield inCandida guilliermondii. Journal of Industrial Microbiology, 1988, 3, 241-251.	0.9	266
3	Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation, 2005, 16, 363-392.	1.5	261
4	Identification of lysine-78 as an essential residue in theSaccharomyces cerevisiaexylose reductase. FEMS Microbiology Letters, 2002, 209, 223-228.	0.7	256
5	The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution, 2005, 133, 455-465.	3.7	254
6	Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnology Advances, 2007, 25, 425-441.	6.0	218
7	Microbial degradation of pentachlorophenol. Biodegradation, 1996, 7, 1-40.	1.5	212
8	Bacterial survival in soil: Effect of clays and protozoa. Soil Biology and Biochemistry, 1993, 25, 525-531.	4.2	152
9	Selected factors limiting the microbial degradation of recalcitrant compounds. Journal of Industrial Microbiology, 1993, 12, 379-395.	0.9	150
10	The expression of aPichia stipitis xylose reductase mutant with higherKM for NADPH increases ethanol production from xylose in recombinantSaccharomyces cerevisiae. Biotechnology and Bioengineering, 2006, 93, 665-673.	1.7	127
11	Detection of Listeria monocytogenes and the toxin listeriolysin O in food. Journal of Microbiological Methods, 2006, 64, 141-170.	0.7	113
12	Induction of Xylose Reductase and Xylitol Dehydrogenase Activities in Pachysolen tannophilus and Pichia stipitis on Mixed Sugars. Applied and Environmental Microbiology, 1988, 54, 50-54.	1.4	103
13	Silver accumulation and resistance in Pseudomonas stutzeri. Archives of Microbiology, 1992, 158, 398.	1.0	91
14	Enhanced removal of selected hydrocarbons from soil byPseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants. Journal of Chemical Technology and Biotechnology, 1994, 59, 53-59.	1.6	83
15	Genetic improvement of native xylose-fermenting yeasts for ethanol production. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1-20.	1.4	80
16	Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. Journal of Industrial Microbiology, 1993, 11, 163-170.	0.9	67
17	Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. Journal of Microbiological Methods, 2010, 81, 179-186.	0.7	64
18	Mutational analysis of the role of the conserved lysine-270 in thePichia stipitisxylose reductase. FEMS Microbiology Letters, 1998, 159, 107-112.	0.7	61

#	Article	IF	CITATIONS
19	Utilization of Xylan by Yeasts and Its Conversion to Ethanol by <i>Pichia stipitis</i> Strains. Applied and Environmental Microbiology, 1986, 52, 320-324.	1.4	61
20	Regulation of d-xylose utilization by hexoses in pentose-fermenting yeasts. Biotechnology Advances, 1990, 8, 685-697.	6.0	59
21	Mutants of the pentoseâ€fermenting yeast <i>Pichia stipitis</i> with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnology and Bioengineering, 2009, 104, 892-900.	1.7	58
22	Emerging trends in the synthesis and improvement of hapten-specific recombinant antibodies. Biotechnology Advances, 2003, 21, 599-637.	6.0	57
23	Molecular targets for detection and immunotherapy in Cryptosporidium parvum. Biotechnology Advances, 2007, 25, 13-44.	6.0	57
24	Effects of 2,2′,5,5′-tetrachlorobiphenyl and biphenyl on cell membranes ofRalstonia eutrophaH850. FEMS Microbiology Letters, 2001, 200, 17-24.	0.7	52
25	Saccharomyces cerevisiae Genome Shuffling through Recursive Population Mating Leads to Improved Tolerance to Spent Sulfite Liquor. Applied and Environmental Microbiology, 2011, 77, 4736-4743.	1.4	52
26	Full-scalein situ bioremediation of hexachlorocyclohexane-contaminated soil. Journal of Chemical Technology and Biotechnology, 2006, 81, 289-298.	1.6	51
27	Persistence of Pseudomonas aureofaciens strains and DNA in soil. Soil Biology and Biochemistry, 1997, 29, 1521-1527.	4.2	49
28	Review: The structure and function of yeast xylose (aldose) reductases. , 1998, 14, 977-984.		47
29	Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing lead accumulation by Eucalyptus camaldulensis. Chemosphere, 2011, 85, 584-590.	4.2	47
30	Transport of bacteria on sloping soil surfaces by runoff. Environmental Toxicology, 2000, 15, 149-153.	2.1	46
31	Phytotoxicity Assay to Assess Plant Species for Phytoremediation of Petroleum-Contaminated Soil. Bioremediation Journal, 2002, 6, 57-63.	1.0	45
32	Induction of Xylose Reductase and Xylitol Dehydrogenase Activities on Mixed Sugars in Candida guilliermondii. Journal of Chemical Technology and Biotechnology, 1996, 65, 375-379.	1.6	44
33	Mutants of <i>Pachysolen tannophilus</i> with Improved Production of Ethanol from <scp>d</scp> -Xylose. Applied and Environmental Microbiology, 1986, 51, 1252-1258.	1.4	44
34	The role of theSphingomonasspecies UG30 pentachlorophenol-4-monooxygenase inp-nitrophenol degradation. FEMS Microbiology Letters, 1999, 173, 247-253.	0.7	40
35	Effect of biotin limitation on the conversion of xylose to ethanol and xylitol by Pachysolen tannophilus and Candida guilliermondii. Enzyme and Microbial Technology, 1988, 10, 81-84.	1.6	39
36	Title is missing!. Water, Air, and Soil Pollution, 1999, 110, 157-169.	1.1	39

#	Article	IF	CITATIONS
37	Synthesis of Ligand-Specific Phage-Display ScFv against the Herbicide Picloram by Direct Cloning from Hyperimmunized Mouse. Journal of Agricultural and Food Chemistry, 2001, 49, 3628-3637.	2.4	37
38	Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Antonie Van Leeuwenhoek, 2013, 103, 1281-1295.	0.7	37
39	Alteration of the substrate range of haloalkane dehalogenase by site-directed mutagenesis. , 1998, 59, 520-523.		36
40	Bacterial Expression and Characterization of a Picloram-Specific Recombinant Fab for Residue Analysis. Journal of Agricultural and Food Chemistry, 1998, 46, 4457-4463.	2.4	35
41	Physiological Properties of a Mutant of <i>Pachysolen tannophilus</i> Deficient in NADPH-Dependent <scp>d</scp> -Xylose Reductase. Applied and Environmental Microbiology, 1989, 55, 2877-2881.	1.4	35
42	Green fluorescent protein as a visual marker in ap-nitrophenol degradingMoraxellasp FEMS Microbiology Letters, 1998, 164, 187-193.	0.7	34
43	Toxicity of diesel fuel to germination, growth and colonization of Glomus intraradices in soil and in vitro transformed carrot root cultures. Plant and Soil, 2005, 270, 23-30.	1.8	32
44	Phenanthrene stimulates the degradation of pyrene and fluoranthene by Burkholderia sp. VUN10013. World Journal of Microbiology and Biotechnology, 2008, 24, 523-531.	1.7	30
45	Evaluating novel fungal secretomes for efficient saccharification and fermentation of composite sugars derived from hydrolysate and molasses into ethanol. Bioresource Technology, 2019, 273, 114-121.	4.8	29
46	Comparison of toxicity detected by five bioassays during bioremediation of diesel fuel-spiked soils. Environmental Toxicology and Water Quality, 1998, 13, 117-126.	0.7	28
47	Recombinant and wild-type Pseudomonas aureofaciens strains introduced into soil microcosms: effect on decomposition of cellulose and straw. Molecular Ecology, 1995, 4, 221-230.	2.0	26
48	Influence of Temperature on Cryptosporidium parvum Oocyst Infectivity in River Water Samples as Detected by Tissue Culture Assay. Journal of Parasitology, 2002, 88, 641-643.	0.3	26
49	Effect of carbon starvation on p-nitrophenol degradation by a Moraxella strain in buffer and river water. FEMS Microbiology Ecology, 2005, 51, 237-245.	1.3	26
50	Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis. Bioresource Technology, 2011, 102, 9965-9969.	4.8	25
51	Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast. Biotechnology for Biofuels, 2015, 8, 53.	6.2	25
52	Identification and characterization of a soil bacterium with extracellular emulsifying activity. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1990, 25, 753-764.	0.1	22
53	Reversible inactivation of d-xylose utilization by d-glucose in the pentose-fermenting yeastPachysolen tannophilus. FEMS Microbiology Letters, 1992, 92, 1-4.	0.7	21
54	Survival ofluxAB-markedAlcaligenes eutrophus H850 in PCB-contaminated soil and sediment. Journal of Chemical Technology and Biotechnology, 1996, 65, 115-122.	1.6	21

#	Article	IF	CITATIONS
55	Cloning and Expression inEscherichia coliof an Anti-Cyclohexanedione Single-Chain Variable Antibody Fragment and Comparison to the Parent Monoclonal Antibody. Journal of Agricultural and Food Chemistry, 1997, 45, 535-541.	2.4	21
56	Monitoring biodegradation of creosote in soils using radiolabels, toxicity tests, and chemical analysis. Environmental Toxicology, 2000, 15, 99-106.	2.1	21
57	Alterations in fatty acid composition and fluidity of cell membranes affect the accumulation of PCB congener 2,2?,5,5?-tetrachlorobiphenyl byRalstonia eutropha H850. Journal of Chemical Technology and Biotechnology, 2002, 77, 793-799.	1.6	21
58	Transport and survival of alginate-encapsulated and free lux-lac marked Pseudomonas aeruginosa UG2Lr cells in soil. FEMS Microbiology Ecology, 1998, 26, 51-61.	1.3	20
59	Mutational study of the role of tyrosine-49 in theSaccharomyces cerevisiae xylose reductase. Yeast, 2001, 18, 1081-1089.	0.8	20
60	Additive Effects of Alcohols, Their Acidic By-Products, and Temperature on the Yeast <i>Pachysolen tannophilus</i> . Applied and Environmental Microbiology, 1990, 56, 545-550.	1.4	20
61	Site-directed mutagenesis of the cysteine residues in the Pichia stipitis xylose reductase. FEMS Microbiology Letters, 2006, 147, 227-232.	0.7	18
62	Effect of Initial Cell Density, Substrate Concentration and Temperature on Pentachlorophenol Degradation byPseudomonas sp. UG30. Journal of Chemical Technology and Biotechnology, 1997, 69, 107-113.	1.6	16
63	Inhibitors of xylose reductase from the yeast pichia stipitis. Applied Biochemistry and Biotechnology, 1991, 30, 325-337.	1.4	15
64	Using a green fluorescent protein gene-labeled p-nitrophenol-degrading Moraxella strain to examine the protective effect of alginate encapsulation against protozoan grazing. Journal of Microbiological Methods, 2000, 39, 205-211.	0.7	15
65	Ethanol Accumulation in Cultures of Pachysolen Tannophilus on D-Xylose is Associated with a Transition to a State of Low Oxygen Consumption. Nature Biotechnology, 1985, 3, 59-62.	9.4	13
66	Temperature mediated changes of d-xylose metabolism in the yeastPachysolen tannophilus. FEMS Microbiology Letters, 1990, 72, 35-40.	0.7	12
67	Decrease in Cryptosporidium parvum Oocyst Infectivity In Vitro by Using the Membrane Filter Dissolution Method for Recovering Oocysts from Water Samples. Applied and Environmental Microbiology, 2001, 67, 3309-3313.	1.4	12
68	Deletion of hxk1 gene results in derepression of xylose utilization in Scheffersomyces stipitis. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 889-896.	1.4	12
69	Evaluation of propidium monoazide and long-amplicon qPCR as an infectivity assay for coliphage. Journal of Virological Methods, 2016, 238, 48-55.	1.0	12
70	Survival of κ-carrageenan-encapsulated and unencapsulated Pseudomonas aeruginosa UG2Lr cells in forest soil monitored by polymerase chain reaction and spread plating. FEMS Microbiology Ecology, 1995, 16, 71-82.	1.3	11
71	Inhibition of Cryptosporidium parvum infection of a mammalian cell culture by recombinant scFv antibodies. Antonie Van Leeuwenhoek, 2008, 94, 353-364.	0.7	11
72	Single-Chain Variable Fragment Antibodies Selected by Phage Display Against the Sporozoite Surface Antigen P23 of Cryptosporidium parvum. Journal of Parasitology, 2009, 95, 75-81.	0.3	10

#	Article	IF	CITATIONS
73	Single chain variable fragment antibodies selected by phage display against the sporozoite surface antigen S16 of Cryptosporidium parvum. Experimental Parasitology, 2010, 125, 124-129.	0.5	10
74	Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid. Antonie Van Leeuwenhoek, 2014, 105, 29-43.	0.7	9
75	Title is missing!. World Journal of Microbiology and Biotechnology, 2002, 18, 17-21.	1.7	8
76	Determinants of tolerance to inhibitors in hardwood spent sulfite liquor in genome shuffled Pachysolen tannophilus strains. Antonie Van Leeuwenhoek, 2015, 108, 811-834.	0.7	8
77	Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037. Journal of Bioscience and Bioengineering, 2016, 121, 631-637.	1.1	8
78	Investigation of the Role of a Conserved Glycine Motif in the Saccharomyces cerevisiae Xylose Reductase. Current Microbiology, 2006, 53, 118-123.	1.0	7
79	Comparing phenanthrene degradation by alginateâ€encapsulated and free <i>Pseudomonas</i> sp. UG14Lr cells in heavy metal contaminated soils. Journal of Chemical Technology and Biotechnology, 2009, 84, 1660-1668.	1.6	6
80	Transfer of plasmid into the pentose-fermenting yeast Pachysolen tannophilus. Journal of Microbiological Methods, 2018, 148, 97-103.	0.7	6
81	Mutational study of the role of N-terminal amino acid residues in tetrachlorohydroquinone reductive dehalogenase from Sphingomonas sp. UG30. Research in Microbiology, 2009, 160, 553-559.	1.0	3
82	Genome Shuffling Protocol for the Pentose-Fermenting Yeast Scheffersomyces stipitis. , 2013, , 447-454.		3
83	Effect of Bioaugmentation with Anaerobic Fungi Isolated from Ruminants on the Hydrolysis of Corn Silage and Phragmites australis. Applied Sciences (Switzerland), 2021, 11, 9123.	1.3	2
84	Comparison of toxicity detected by five bioassays during bioremediation of diesel fuel-spiked soils. , 1998, 13, 117.		2
85	Transport and survival of alginate-encapsulated and free lux-lac marked Pseudomonas aeruginosa UG2Lr cells in soil. , 0, .		2

Recombinant Antibodies for Pathogen Detection and Immunotherapy. , 0, , 851-881.

0