Haichuan Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5348884/publications.pdf

Version: 2024-02-01

840585 713332 39 476 11 21 citations h-index g-index papers 39 39 39 590 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Accurate Angular Inference for 802.11ad Devices Using Beam-Specific Measurements. IEEE Transactions on Mobile Computing, 2022, 21, 822-834.	3.9	2
2	Probabilistic Data Prefetching for Data Transportation in Smart Cities. IEEE Internet of Things Journal, 2022, 9, 1655-1666.	5. 5	2
3	End-to-End Service Auction: A General Double Auction Mechanism for Edge Computing Services. IEEE/ACM Transactions on Networking, 2022, 30, 2616-2629.	2.6	2
4	Optimizing IoT Energy Efficiency on Edge (EEE): A Cross-Layer Design in a Cognitive Mesh Network. IEEE Transactions on Wireless Communications, 2021, 20, 2472-2486.	6.1	4
5	Outage Analysis for Cooperative mmWave UAV Communications with Beam Training Overhead. IEEE Wireless Communications Letters, 2021, , 1 -1.	3.2	3
6	Augmenting Transmission Environments for Better Communications: Tunable Reflector Assisted MmWave WLANs. IEEE Transactions on Vehicular Technology, 2020, 69, 7416-7428.	3.9	9
7	Energy-Efficient Channel Switching in Cognitive Radio Networks: A Reinforcement Learning Approach. IEEE Transactions on Vehicular Technology, 2020, 69, 12359-12362.	3.9	10
8	Energy Minimization of Multi-Cell Cognitive Capacity Harvesting Networks With Neighbor Resource Sharing. IEEE Transactions on Wireless Communications, 2020, 19, 3199-3213.	6.1	6
9	Machine Learning-Based Handovers for Sub-6 GHz and mmWave Integrated Vehicular Networks. IEEE Transactions on Wireless Communications, 2019, 18, 4873-4885.	6.1	71
10	A Data-Driven Cost-Effective Session-Oriented Cognitive Radio Transmission Scheme Under Spectrum Uncertainty. IEEE Transactions on Vehicular Technology, 2019, 68, 12401-12405.	3.9	7
11	Performance Optimization for D2D Communications With Opportunistic Relay and Physical-Layer Network Coding. IEEE Transactions on Vehicular Technology, 2019, 68, 11928-11943.	3.9	8
12	Data-Driven Service Provisioning over Shared Spectrums with Statistical QoS Guarantee., 2019,,.		3
13	Statistical QoS Provisioning Over Uncertain Shared Spectrums in Cognitive IoT Networks: A Distributionally Robust Data-Driven Approach. IEEE Transactions on Vehicular Technology, 2019, 68, 12286-12300.	3.9	18
14	SPATH: Finding the Safest Walking Path in Smart Cities. IEEE Transactions on Vehicular Technology, 2019, 68, 7071-7079.	3.9	13
15	Exploiting Wireless Broadcast Advantage for Energy Efficient Packet Overhearing in WiFi. IEEE Transactions on Vehicular Technology, 2019, 68, 3586-3599.	3.9	4
16	Collaborative Spectrum Trading and Sharing for Cognitive Radio Networks., 2019,, 931-968.		4
17	Energy-Efficient D2D Communications With Dynamic Time-Resource Allocation. IEEE Transactions on Vehicular Technology, 2019, 68, 11985-11999.	3.9	8
18	Beef Up the Edge: Spectrum-Aware Placement of Edge Computing Services for the Internet of Things. IEEE Transactions on Mobile Computing, 2019, 18, 2783-2795.	3.9	33

#	Article	IF	CITATIONS
19	Low-complexity uplink scheduling algorithms with power control in successive interference cancellation based wireless mud-logging systems. Wireless Networks, 2019, 25, 321-334.	2.0	7
20	Smart Cities on Wheels: A Newly Emerging Vehicular Cognitive Capability Harvesting Network for Data Transportation. IEEE Wireless Communications, 2018, 25, 160-169.	6.6	49
21	Session-Based Cooperation in Cognitive Radio Networks: A Network-Level Approach. IEEE/ACM Transactions on Networking, 2018, 26, 685-698.	2.6	7
22	Access Point Recruitment in a Vehicular Cognitive Capability Harvesting Network: How Much Data Can Be Uploaded?. IEEE Transactions on Vehicular Technology, 2018, 67, 6438-6445.	3.9	9
23	Virtual Infrastructure at Traffic Lights: Vehicular Temporary Storage Assisted Data Transportation at Signalized Intersections. IEEE Transactions on Vehicular Technology, 2018, 67, 12452-12456.	3.9	9
24	Intelligent Data Transportation in Smart Cities: A Spectrum-Aware Approach. IEEE/ACM Transactions on Networking, 2018, 26, 2598-2611.	2.6	23
25	PhyCast: Towards Energy Efficient Packet Overhearing in WiFi Networks. , 2018, , .		3
26	Mitigating Traffic Analysis Attack in Smartphones with Edge Network Assistance. , 2018, , .		2
27	A UHF RFID-Based System for Children Tracking. IEEE Internet of Things Journal, 2018, 5, 5055-5064.	5.5	14
28	Cognitive Capacity Harvesting Networks: Architectural Evolution Toward Future Cognitive Radio Networks. IEEE Communications Surveys and Tutorials, 2017, 19, 1902-1923.	24.8	53
29	Policy-Based Privacy-Preserving Scheme for Primary Users in Database-Driven Cognitive Radio Networks. , 2016, , .		7
30	On the Performance of HARQ-IR over Nakagami-m Fading Channels in Mobile Ad Hoc Networks. IEEE Transactions on Vehicular Technology, 2016, , 1-1.	3.9	6
31	An Energy-Efficient Strategy for Secondary Users in Cooperative Cognitive Radio Networks for Green Communications. IEEE Journal on Selected Areas in Communications, 2016, 34, 3195-3207.	9.7	19
32	Users First: Service-Oriented Spectrum Auction With a Two-Tier Framework Support. IEEE Journal on Selected Areas in Communications, 2016, 34, 2999-3013.	9.7	28
33	Energy-Efficient Secondary Traffic Scheduling with MIMO Beamforming. , 2015, , .		2
34	An Energy-Efficient Cooperative Strategy for Secondary Users in Cognitive Radio Networks. , 2015, , .		3
35	A Secure Collaborative Machine Learning Framework Based on Data Locality. , 2015, , .		9
36	Analysis of HARQ-IR Over Time-Correlated Rayleigh Fading Channels. IEEE Transactions on Wireless Communications, 2015, 14, 7096-7109.	6.1	19

3

Haichuan Ding

#	Article	IF	CITATIONS
37	A Secure Collaborative Machine Learning Framework Based on Data Locality. , 2014, , .		0
38	Energy-Efficient Secondary Traffic Scheduling with MIMO Beamforming. , 2014, , .		O
39	An Energy-Efficient Cooperative Strategy for Secondary Users in Cognitive Radio Networks. , 2014, , .		o