
Yi-Chung Tung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5348814/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst, The, 2011, 136, 473-478.	1.7	805
2	Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18886-18891.	3.3	439
3	Microfluidic Endothelium for Studying the Intravascular Adhesion of Metastatic Breast Cancer Cells. PLoS ONE, 2009, 4, e5756.	1.1	283
4	Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials, 2009, 30, 3020-3027.	5.7	274
5	MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Molecular Cancer, 2019, 18, 42.	7.9	254
6	Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices. Nature Physics, 2010, 6, 433-437.	6.5	229
7	Characterization and Resolution of Evaporation-Mediated Osmolality Shifts That Constrain Microfluidic Cell Culture in Poly(dimethylsiloxane) Devices. Analytical Chemistry, 2007, 79, 1126-1134.	3.2	214
8	Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab on A Chip, 2011, 11, 609-619.	3.1	197
9	PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes. Sensors and Actuators B: Chemical, 2004, 98, 356-367.	4.0	176
10	Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions. Lab on A Chip, 2011, 11, 3626.	3.1	156
11	Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Scientific Reports, 2016, 6, 21061.	1.6	155
12	Fabrication of Two-Layered Channel System with Embedded Electrodes to Measure Resistance Across Epithelial and Endothelial Barriers. Analytical Chemistry, 2010, 82, 2505-2511.	3.2	119
13	A polydimethylsiloxane–polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Lab on A Chip, 2014, 14, 3762-3772.	3.1	117
14	Individually programmable cell stretching microwell arrays actuated by a Braille display. Biomaterials, 2008, 29, 2646-2655.	5.7	114
15	384 hanging drop arrays give excellent <i>Z</i> â€factors and allow versatile formation of coâ€ɛulture spheroids. Biotechnology and Bioengineering, 2012, 109, 1293-1304.	1.7	114
16	Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomedical Microdevices, 2012, 14, 313-323.	1.4	106
17	Hard Top Soft Bottom Microfluidic Devices for Cell Culture and Chemical Analysis. Analytical Chemistry, 2009, 81, 3714-3722.	3.2	104
18	Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab on A Chip, 2011, 11, 1740.	3.1	104

ҮІ-СНИМС ТИМС

#	Article	IF	CITATIONS
19	Title is missing!. Biomedical Microdevices, 2002, 4, 141-149.	1.4	102
20	A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis. Biomicrofluidics, 2013, 7, 54114.	1.2	87
21	Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab on A Chip, 2013, 13, 1743.	3.1	80
22	Flexible Localized Surface Plasmon Resonance Sensor with Metal–Insulator–Metal Nanodisks on PDMS Substrate. Scientific Reports, 2018, 8, 11812.	1.6	73
23	A microfluidic cell culture array with various oxygen tensions. Lab on A Chip, 2013, 13, 3239.	3.1	72
24	Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin – Microbubble scaffold. Biomaterials, 2014, 35, 5660-5669.	5.7	55
25	Patterned Electrode-Based Amperometric Gas Sensor for Direct Nitric Oxide Detection within Microfluidic Devices. Analytical Chemistry, 2010, 82, 3300-3305.	3.2	45
26	Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing. Lab on A Chip, 2012, 12, 3135.	3.1	43
27	Multiplexed hydraulic valve actuation using ionic liquid filled soft channels and Braille displays. Applied Physics Letters, 2007, 90, 033505.	1.5	42
28	Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics. Lab on A Chip, 2007, 7, 1497.	3.1	38
29	Optofluidic detection for cellular phenotyping. Lab on A Chip, 2012, 12, 3552.	3.1	38
30	Nanoimprinted strain-controlled elastomeric gratings for optical wavelength tuning. Applied Physics Letters, 2005, 86, 161113.	1.5	34
31	Migration and vascular lumen formation of endothelial cells in cancer cell spheroids of various sizes. Biomicrofluidics, 2014, 8, 052109.	1.2	34
32	Microfluidic Collective Cell Migration Assay for Study of Endothelial Cell Proliferation and Migration under Combinations of Oxygen Gradients, Tensions, and Drug Treatments. Scientific Reports, 2019, 9, 8234.	1.6	32
33	Electrically Programmable Surfaces for Configurable Patterning of Cells. Advanced Materials, 2008, 20, 1418-1423.	11.1	29
34	A single-layer PDMS-on-silicon hybrid microactuator with multi-axis out-of-plane motion capabilities-part II: fabrication and characterization. Journal of Microelectromechanical Systems, 2005, 14, 558-566.	1.7	27
35	A single-layer PDMS-on-silicon hybrid microactuator with multi-axis out-of-plane motion capabilities-Part i: design and analysis. Journal of Microelectromechanical Systems, 2005, 14, 548-557.	1.7	27
36	Design of a MEMS Tunable Polymer Grating for Single Detector Spectroscopy. International Journal of Optomechatronics, 2008, 2, 75-87.	3.3	25

YI-CHUNG TUNG

#	Article	IF	CITATIONS
37	Electrofluidic Circuit-Based Microfluidic Viscometer for Analysis of Newtonian and Non-Newtonian Liquids under Different Temperatures. Analytical Chemistry, 2018, 90, 2317-2325.	3.2	24
38	A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis. Lab on A Chip, 2013, 13, 3082.	3.1	21
39	Review of microfluidic cell culture devices for the control of gaseous microenvironments <i>in vitro</i> . Journal of Micromechanics and Microengineering, 2018, 28, 043001.	1.5	21
40	Electro-elastic characteristics of asymmetric rectangular piezoelectric laminae. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46, 950-960.	1.7	20
41	Interaction between lung cancer cell and myofibroblast influenced by cyclic tensile strain. Lab on A Chip, 2013, 13, 1114.	3.1	20
42	Magnet-assisted device-level alignment for the fabrication of membrane-sandwiched polydimethylsiloxane microfluidic devices. Journal of Micromechanics and Microengineering, 2012, 22, 075006.	1.5	19
43	Polydimethylsiloxane SlipChip for mammalian cell culture applications. Analyst, The, 2015, 140, 7355-7365.	1.7	18
44	Study of oxygen tension variation within live tumor spheroids using microfluidic devices and multi-photon laser scanning microscopy. RSC Advances, 2018, 8, 30320-30329.	1.7	17
45	A Low-Power CMOS Microfluidic Pump Based on Travelling-Wave Electroosmosis for Diluted Serum Pumping. Scientific Reports, 2019, 9, 14794.	1.6	17
46	Widefield frequency domain fluorescence lifetime imaging microscopy (FD-FLIM) for accurate measurement of oxygen gradients within microfluidic devices. Analyst, The, 2019, 144, 3494-3504.	1.7	17
47	Evaluation of Nanoparticle Penetration in the Tumor Spheroid Using Two-Photon Microscopy. Biomedicines, 2021, 9, 10.	1.4	15
48	Multiplexed Spectral Signature Detection for Microfluidic Color-Coded Bioparticle Flow. Analytical Chemistry, 2010, 82, 9506-9512.	3.2	14
49	Comparison of VEGF-A secretion from tumor cells under cellular stresses in conventional monolayer culture and microfluidic three-dimensional spheroid models. PLoS ONE, 2020, 15, e0240833.	1.1	14
50	Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics. Lab on A Chip, 2012, 12, 3943.	3.1	13
51	Plasmonic gel films for time-lapse LSPR detection of hydrogen peroxide secreted from living cells. Sensors and Actuators B: Chemical, 2021, 336, 129725.	4.0	13
52	A Flexible Nanograting Integrated Onto Silicon Micromachines by Soft Lithographic Replica Molding and Assembly. Journal of Microelectromechanical Systems, 2008, 17, 393-401.	1.7	12
53	High-speed tuning of visible laser wavelength using a nanoimprinted grating optical tunable filter. Applied Physics Letters, 2009, 95, 211106.	1.5	12
54	Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device. Scientific Reports, 2016, 6, 36425.	1.6	12

YI-CHUNG TUNG

#	Article	IF	CITATIONS
55	Two dimensional thermoelectric platforms for thermocapillary droplet actuation. RSC Advances, 2012, 2, 1639-1642.	1.7	11
56	Study 3D Endothelial Cell Network Formation under Various Oxygen Microenvironment and Hydrogel Composition Combinations Using Upsideâ€Down Microfluidic Devices. Small, 2021, 17, e2006091.	5.2	10
57	Transwell Insert-Embedded Microfluidic Devices for Time-Lapse Monitoring of Alveolar Epithelium Barrier Function under Various Stimulations. Micromachines, 2021, 12, 406.	1.4	10
58	High-speed deformation of soft lithographic nanograting patterns for ultrasensitive optical spectroscopy. Applied Physics Letters, 2008, 92, 051116.	1.5	9
59	A frequency-control particle separation device based on resultant effects of electroosmosis and dielectrophoresis. Applied Physics Letters, 2016, 109, 053701.	1.5	9
60	Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients. Journal of Visualized Experiments, 2017, , .	0.2	8
61	External Compression-Induced Fracture Patterning on the Surface of Poly(dimethylsiloxane) Cubes and Microspheres. Langmuir, 2009, 25, 3102-3107.	1.6	7
62	Generation of nitric oxide gradients in microfluidic devices for cell culture using spatially controlled chemical reactions. Biomicrofluidics, 2013, 7, 64104.	1.2	7
63	Dynamically programmable surface micro-wrinkles on PDMS-SMA composite. Smart Materials and Structures, 2014, 23, 115007.	1.8	7
64	Flip channel: A microfluidic device for uniform-sized embryoid body formation and differentiation. Biomicrofluidics, 2015, 9, 054111.	1.2	6
65	Epidermal growth factor-like repeats of SCUBE1 derived from platelets are critical for thrombus formation. Cardiovascular Research, 2020, 116, 193-201.	1.8	6
66	Increased vasculogenesis of endothelial cells in hyaluronic acid augmented fibrin-based natural hydrogels – from in vitro to in vivo models. , 2020, 40, 133-145.		6
67	Cav3.2 Tâ€ŧype calcium channel regulates mouse platelet activation and arterial thrombosis. Journal of Thrombosis and Haemostasis, 2022, 20, 1887-1899.	1.9	6
68	A PDMS-on-Silicon Deformable Grating for Spectral Differentiation of Mixed Wavelength Signals. , 2007, , .		5
69	An in-situ filtering pump for particle-sample filtration based on low-voltage electrokinetic mechanism. Sensors and Actuators B: Chemical, 2017, 238, 809-816.	4.0	5
70	A sheathless inertial focusing technique for optofluidic devices. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	5
71	Effects of hydraulic pressure on cardiomyoblasts in a microfluidic device. Biomicrofluidics, 2015, 9, 024111.	1.2	4
72	Editorial: Medical and Industrial Applications of Microfluidic-Based Cell/Tissue Culture and Organs-on-a-Chip. Frontiers in Bioengineering and Biotechnology, 2019, 7, 151.	2.0	4

YI-CHUNG TUNG

#	Article	IF	CITATIONS
73	Editorial for the Special Issue on Organs-on-Chips. Micromachines, 2020, 11, 369.	1.4	4
74	Revealing anisotropic elasticity of endothelium under fluid shear stress. Acta Biomaterialia, 2022, 145, 316-328.	4.1	4
75	A novel design of piezo-driven dual-dimension optical scanning mechanism. Review of Scientific Instruments, 1998, 69, 3277-3282.	0.6	3
76	MEMS tunable polymer grating for advantageous spectroscopic measurements. Proceedings of SPIE, 2007, , .	0.8	3
77	Fully disposable and optically transparent microfluidic viscometer based on electrofluidic pressure sensor. , 2017, , .		3
78	Study Effects of Drug Treatment and Physiological Physical Stimulation on Surfactant Protein Expression of Lung Epithelial Cells Using a Biomimetic Microfluidic Cell Culture Device. Micromachines, 2019, 10, 400.	1.4	3
79	Comparison of Hydrogen Peroxide Secretion From Living Cells Cultured in Different Formats Using Hydrogel-Based LSPR Substrates. Frontiers in Bioengineering and Biotechnology, 2022, 10, 869184.	2.0	3
80	Multi-axis single-layer PDMS-on-silicon micro optical reflector. , 2004, , .		2
81	A metal-coated polymer micromirror for strain-driven high-speed multiaxis optical scanning. IEEE Photonics Technology Letters, 2005, 17, 1193-1195.	1.3	2
82	A nanoimprinted strain-induced reconfigurable polymer micro-optical grating. , 0, , .		1
83	A seamlessly integrated microfluidic pressure sensor based on an ionic liquid electrofluidic circuit. , 2011, , .		1
84	Interfacial adhesion and superhydrophobicity modulated with polymeric nanopillars using integrated nanolithography. Journal of Micromechanics and Microengineering, 2012, 22, 125026.	1.5	1
85	Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries. Journal of Micromechanics and Microengineering, 2017, 27, 115003.	1.5	1
86	A microfluidic device to study effects of physical stimulation and steroid treatment on lung epithelial cell surfactant protein expression. , 2017, , .		1
87	One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes. Journal of Visualized Experiments, 2018, , .	0.2	1
88	Microfluidic Devices: Study 3D Endothelial Cell Network Formation under Various Oxygen Microenvironment and Hydrogel Composition Combinations Using Upsideâ€Đown Microfluidic Devices (Small 15/2021). Small, 2021, 17, 2170069.	5.2	1
89	Identifying distinct oxygen diffusivity through type I pneumocyte-like cell layers using microfluidic device. Talanta, 2022, 236, 122882.	2.9	1
90	Design Optimization of a Novel, Large-Displacement, Multi-Axis, Silicon/Polymer Hybrid Actuator for		0

Micro Optics. , 2003, , 197.

ҮІ-СНИМС ТИМС

#	Article	IF	CITATIONS
91	Biological Micro/Nanofluidics. , 2008, , .		0
92	Ionic Liquids for Microfluidic Actuation. ACS Symposium Series, 2010, , 157-173.	0.5	0
93	Multi-spectral tunable excitation fluorescence microscopy with a nanoimprinted PDMS-on-silicon grating optical filter. , 2012, , .		Ο
94	Generation of perpendicular chemical and oxygen gradients for cell culture in a microfluidic device. , 2013, , .		0
95	Research on imaging, sensing, and characterization of cells at Research Center for Applied Sciences (RCAS), Academia Sinica. Proceedings of SPIE, 2015, , .	0.8	Ο
96	Study Endothelial Cell Networking in Hydrogel Under Oxygen Gradients Using Microfluidic Devices. , 2019, , .		0
97	Development of in Vitro Microfluidic Circulatory System. , 2020, , .		0
98	Multiscale, Hierarchical Integration of Soft Polymer Micro- and Nanostructures into Optical MEMS. , 2012, , 491-518.		0
99	Ionic Liquid-based Physical Sensors. RSC Smart Materials, 2017, , 296-320.	0.1	0
100	Reveal Anisotropic Elasticity of Endothelium Under Fluidic Shear Stress. SSRN Electronic Journal, O, , .	0.4	0