Jessica A Head

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5348650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EcoToxXplorer: Leveraging Design Thinking to Develop a Standardized Webâ€Based Transcriptomics Analytics Platform for Diverse Users. Environmental Toxicology and Chemistry, 2022, 41, 21-29.	4.3	6
2	Consideration of metabolomics and transcriptomics data in the context of using avian embryos for toxicity testing. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 258, 109370.	2.6	3
3	Exposure to Contaminated River Water is Associated with Early Hatching and Dysregulation of Gene Expression in Early Life Stages of the Endangered Copper Redhorse (<i>Moxostoma hubbsi</i>). Environmental Toxicology and Chemistry, 2022, 41, 1950-1966.	4.3	1
4	Effects on Apical Outcomes of Regulatory Relevance of Earlyâ€Life Stage Exposure of Doubleâ€Crested Cormorant Embryos to 4 Environmental Chemicals. Environmental Toxicology and Chemistry, 2021, 40, 390-401.	4.3	10
5	Effects of acute stressors experienced by five strains of layer breeders on measures of stress and fear in their offspring. Physiology and Behavior, 2021, 228, 113185.	2.1	9
6	Ultrafast functional profiling of RNA-seq data for nonmodel organisms. Genome Research, 2021, 31, 713-720.	5.5	15
7	Using Transcriptomics and Metabolomics to Understand Species Differences in Sensitivity to Chlorpyrifos in Japanese Quail and Doubleâ€Crested Cormorant Embryos. Environmental Toxicology and Chemistry, 2021, 40, 3019-3033.	4.3	11
8	Targeted Metabolomics to Assess Exposure to Environmental Chemicals of Concern in Japanese Quail at Two Life Stages. Metabolites, 2021, 11, 850.	2.9	3
9	An Early–Life Stage Alternative Testing Strategy for Assessing the Impacts of Environmental Chemicals in Birds. Environmental Toxicology and Chemistry, 2020, 39, 141-154.	4.3	21
10	Assessment of the effects of early life exposure to triphenyl phosphate on fear, boldness, aggression, and activity in Japanese quail (Coturnix japonica) chicks. Environmental Pollution, 2020, 258, 113695.	7.5	9
11	Uptake, Deposition, and Metabolism of Triphenyl Phosphate in Embryonated Eggs and Chicks of Japanese Quail (<i>Coturnix japonica</i>). Environmental Toxicology and Chemistry, 2020, 39, 565-573.	4.3	5
12	Polycyclic aromatic compounds (PACs) in the Canadian environment: Exposure and effects on wildlife. Environmental Pollution, 2020, 265, 114863.	7.5	60
13	Exploring the Impacts of Methylmercuryâ€Induced Behavioral Alterations in Larval Yellow Perch in Lake Michigan Using an Individualâ€Based Model. Transactions of the American Fisheries Society, 2020, 149, 664-680.	1.4	2
14	Early life exposure to triphenyl phosphate: Effects on thyroid function, growth, and resting metabolic rate of Japanese quail (Coturnix japonica) chicks. Environmental Pollution, 2019, 253, 899-908.	7.5	23
15	Cumulative effects of cadmium and natural stressors (temperature and parasite infection) on molecular and biochemical responses of juvenile rainbow trout. Aquatic Toxicology, 2019, 217, 105347.	4.0	19
16	EcoToxChip: A nextâ€generation toxicogenomics tool for chemical prioritization and environmental management. Environmental Toxicology and Chemistry, 2019, 38, 279-288.	4.3	47
17	Interindividual variation in the cytochrome P4501A response to 2,3,7,8â€tetrachlorodibenzo―p â€dioxin in herring gull embryo hepatocytes. Environmental Toxicology and Chemistry, 2019, 38, 660-670.	4.3	5
18	An Ecotoxicological Perspective on Transgenerational Epigenetic Inheritance. Environmental Toxicology and Chemistry, 2019, 38, 1149-1151.	4.3	7

JESSICA A HEAD

#	Article	IF	CITATIONS
19	Assessment of environmentally contaminated sediment using a contact assay with early life stage zebrafish (Danio rerio). Science of the Total Environment, 2019, 659, 950-962.	8.0	14
20	Potency of polycyclic aromatic hydrocarbons in chicken and Japanese quail embryos. Environmental Toxicology and Chemistry, 2018, 37, 1556-1564.	4.3	17
21	Effects of in ovo exposure to benzo[k]fluoranthene (BkF) on CYP1A expression and promoter methylation in developing chicken embryos. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 204, 88-96.	2.6	9
22	Female hatchling American kestrels have a larger hippocampus than males: A link with sexual size dimorphism?. Behavioural Brain Research, 2018, 349, 98-101.	2.2	2
23	A cellâ€free testing platform to screen chemicals of potential neurotoxic concern across twenty vertebrate species. Environmental Toxicology and Chemistry, 2017, 36, 3081-3090.	4.3	8
24	Developmental Methylmercury Exposure Affects Swimming Behavior and Foraging Efficiency of Yellow Perch (<i>Perca flavescens</i>) Larvae. ACS Omega, 2017, 2, 4870-4877.	3.5	13
25	Parental Whole Life Cycle Exposure to Dietary Methylmercury in Zebrafish (<i>Danio rerio</i>) Affects the Behavior of Offspring. Environmental Science & Technology, 2016, 50, 4808-4816.	10.0	32
26	Potency of Polycyclic Aromatic Hydrocarbons (PAHs) for Induction of Ethoxyresorufin- <i>O</i> -deethylase (EROD) Activity in Hepatocyte Cultures from Chicken, Pekin Duck, And Greater Scaup. Environmental Science & Technology, 2015, 49, 3787-3794.	10.0	23
27	Ecogenetics of mercury: From genetic polymorphisms and epigenetics to risk assessment and decisionâ€making. Environmental Toxicology and Chemistry, 2014, 33, 1248-1258.	4.3	81
28	Application of the <scp>LU</scp> minometric <scp>M</scp> ethylation <scp>A</scp> ssay to ecological species: tissue quality requirements and a survey of <scp>DNA</scp> methylation levels in animals. Molecular Ecology Resources, 2014, 14, 943-952.	4.8	26
29	Patterns of DNA Methylation in Animals: An Ecotoxicological Perspective. Integrative and Comparative Biology, 2014, 54, 77-86.	2.0	97
30	Absence of Fractionation of Mercury Isotopes during Trophic Transfer of Methylmercury to Freshwater Fish in Captivity. Environmental Science & Technology, 2012, 46, 7527-7534.	10.0	121
31	Epigenetics for ecotoxicologists. Environmental Toxicology and Chemistry, 2012, 31, 221-227.	4.3	70
32	Retrospective analysis of mercury content in feathers of birds collected from the state of Michigan (1895–2007). Ecotoxicology, 2011, 20, 1636-1643.	2.4	19
33	Correlation between an in vitro and an in vivo measure of dioxin sensitivity in birds. Ecotoxicology, 2010, 19, 377-382.	2.4	41
34	Mammalian wildlife as complementary models in environmental neurotoxicology. Neurotoxicology and Teratology, 2010, 32, 114-119.	2.4	40
35	The mink is still a reliable sentinel species in environmental health. Environmental Research, 2009, 109, 940-941.	7.5	6
36	Key Amino Acids in the Aryl Hydrocarbon Receptor Predict Dioxin Sensitivity in Avian Species. Environmental Science & amp; Technology, 2008, 42, 7535-7541.	10.0	121

#	Article	IF	CITATIONS
37	Differential expression, induction, and stability of CYP1A4 and CYP1A5 mRNA in chicken and herring gull embryo hepatocytes. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 145, 617-624.	2.6	28
38	Same-sample analysis of ethoxyresorufin-O-deethylase activity and cytochrome P4501A mRNA abundance in chicken embryo hepatocytes. Analytical Biochemistry, 2007, 360, 294-302.	2.4	41
39	EXPOSURE TO 3,3′,4,4′,5-PENTACHLOROBIPHENYL DURING EMBRYONIC DEVELOPMENT HAS A MINIMAL E ON THE CYTOCHROME P4501A RESPONSE TO 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN IN CULTURED CHICKEN EMBRYO HEPATOCYTES. Environmental Toxicology and Chemistry. 2006, 25, 2981.	EFFECT 4.3	42