Daniel P Poole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5348092/publications.pdf Version: 2024-02-01

DANIEL D DOOLE

#	Article	IF	CITATIONS
1	Cigarette smoke–induced neurogenic inflammation is mediated by α,β-unsaturated aldehydes and the TRPA1 receptor in rodents. Journal of Clinical Investigation, 2008, 118, 2574-82.	8.2	328
2	The TGR5 receptor mediates bile acid–induced itch and analgesia. Journal of Clinical Investigation, 2013, 123, 1513-1530.	8.2	301
3	The Receptor TGR5 Mediates the Prokinetic Actions of Intestinal Bile Acids and Is Required for Normal Defecation in Mice. Gastroenterology, 2013, 144, 145-154.	1.3	265
4	The Bile Acid Receptor TGR5 Activates the TRPA1 Channel to Induce Itch in Mice. Gastroenterology, 2014, 147, 1417-1428.	1.3	188
5	Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterology and Motility, 2010, 22, 814-e228.	3.0	185
6	Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Science Translational Medicine, 2017, 9, .	12.4	158
7	The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterology and Motility, 2011, 23, 980-988.	3.0	154
8	Protease-activated Receptor 2 (PAR2) Protein and Transient Receptor Potential Vanilloid 4 (TRPV4) Protein Coupling Is Required for Sustained Inflammatory Signaling*. Journal of Biological Chemistry, 2013, 288, 5790-5802.	3.4	140
9	Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12309-12314.	7.1	136
10	The G Protein–Coupled Receptor–Transient Receptor Potential Channel Axis: Molecular Insights for Targeting Disorders of Sensation and Inflammation. Pharmacological Reviews, 2015, 67, 36-73.	16.0	131
11	Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7438-E7447.	7.1	128
12	Quantification and Potential Functions of Endogenous Agonists of Transient Receptor Potential Channels in Patients With Irritable Bowel Syndrome. Gastroenterology, 2015, 149, 433-444.e7.	1.3	116
13	The distribution of purine P2X2 receptors in the guinea-pig enteric nervous system. Histochemistry and Cell Biology, 2002, 117, 415-422.	1.7	114
14	The distribution of P2X3 purine receptor subunits in the guinea pig enteric nervous system. Autonomic Neuroscience: Basic and Clinical, 2002, 101, 39-47.	2.8	103
15	A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nature Nanotechnology, 2019, 14, 1150-1159.	31.5	103
16	Enteric Glia Modulate Macrophage Phenotype and Visceral Sensitivity following Inflammation. Cell Reports, 2020, 32, 108100.	6.4	93
17	Evidence that two forms of choline acetyltransferase are differentially expressed in subclasses of enteric neurons. Cell and Tissue Research, 2003, 311, 11-22.	2.9	92
18	Transient Receptor Potential Ankyrin 1 Is Expressed by Inhibitory Motoneurons of the Mouse Intestine. Gastroenterology, 2011, 141, 565-575.e4.	1.3	81

#	Article	IF	CITATIONS
19	The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts. Journal of Biological Chemistry, 2013, 288, 22942-22960.	3.4	78
20	Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. American Journal of Physiology - Renal Physiology, 2010, 299, G556-G571.	3.4	76
21	Endosomal signaling of delta opioid receptors is an endogenous mechanism and therapeutic target for relief from inflammatory pain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15281-15292.	7.1	72
22	Plasma membrane localization of the μ-opioid receptor controls spatiotemporal signaling. Science Signaling, 2016, 9, ra16.	3.6	61
23	Identification of neurons that express 5-hydroxytryptamine4 receptors in intestine. Cell and Tissue Research, 2006, 325, 413-422.	2.9	59
24	Activation of pruritogenic TGR5, MrgprA3, and MrgprC11 on colon-innervating afferents induces visceral hypersensitivity. JCI Insight, 2019, 4, .	5.0	59
25	Localization and Regulation of Fluorescently Labeled Delta Opioid Receptor, Expressed in Enteric Neurons of Mice. Gastroenterology, 2011, 141, 982-991.e8.	1.3	58
26	Endosomal Endothelin-converting Enzyme-1. Journal of Biological Chemistry, 2009, 284, 22411-22425.	3.4	56
27	Neurochemical Coding of the Enteric Nervous System in Chagasic Patients with Megacolon. Digestive Diseases and Sciences, 2007, 52, 2877-2883.	2.3	47
28	N-Glycosylation Determines Ionic Permeability and Desensitization of the TRPV1 Capsaicin Receptor. Journal of Biological Chemistry, 2012, 287, 21765-21772.	3.4	44
29	Synergistic effect of IL-12 and IL-18 induces TIM3 regulation of γδT cell function and decreases the risk of clinical malaria in children living in Papua New Guinea. BMC Medicine, 2017, 15, 114.	5.5	41
30	P2Y1 Receptor Activation of the TRPV4 Ion Channel Enhances Purinergic Signaling in Satellite Glial Cells. Journal of Biological Chemistry, 2015, 290, 29051-29062.	3.4	39
31	Rapid Assessment of Nanoparticle Extravasation in a Microfluidic Tumor Model. ACS Applied Nano Materials, 2019, 2, 1844-1856.	5.0	36
32	Agonist-biased Trafficking of Somatostatin Receptor 2A in Enteric Neurons. Journal of Biological Chemistry, 2013, 288, 25689-25700.	3.4	35
33	Protein kinases expressed by interstitial cells of Cajal. Histochemistry and Cell Biology, 2004, 121, 21-30.	1.7	32
34	Protein kinase�C isoforms in the enteric nervous system. Histochemistry and Cell Biology, 2003, 120, 51-61.	1.7	31
35	Endothelinâ€converting enzymeâ€1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones. Journal of Physiology, 2011, 589, 5213-5230.	2.9	31
36	Knock out of neuronal nitric oxide synthase exacerbates intestinal ischemia/reperfusion injury in mice. Cell and Tissue Research, 2012, 349, 565-576.	2.9	31

#	Article	IF	CITATIONS
37	Transient receptor potential vanilloid 4 inhibits mouse colonic motility by activating NO-dependent enteric neurotransmission. Journal of Molecular Medicine, 2015, 93, 1297-1309.	3.9	31
38	Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine. Nutrients, 2016, 8, 623.	4.1	30
39	Protein kinase D isoforms are expressed in rat and mouse primary sensory neurons and are activated by agonists of proteaseâ€activated receptor 2. Journal of Comparative Neurology, 2009, 516, 141-156.	1.6	29
40	G-CSF Receptor Blockade Ameliorates Arthritic Pain and Disease. Journal of Immunology, 2017, 198, 3565-3575.	0.8	28
41	Local Secretion of Urocortin 1 Promotes Microvascular Permeability during Lipopolysaccharide-Induced Inflammation. Endocrinology, 2009, 150, 5428-5437.	2.8	27
42	Biological redundancy of endogenous GPCR ligands in the gut and the potential for endogenous functional selectivity. Frontiers in Pharmacology, 2014, 5, 262.	3.5	27
43	Internalized GPCRs as Potential Therapeutic Targets for the Management of Pain. Frontiers in Molecular Neuroscience, 2019, 12, 273.	2.9	27
44	Effects and mechanisms of action of the ergopeptides ergotamine and ergovaline and the effects of peramine on reticulum motility of sheep. American Journal of Veterinary Research, 2009, 70, 270-276.	0.6	25
45	Coâ€expression of μ and δ opioid receptors by mouse colonic nociceptors. British Journal of Pharmacology, 2018, 175, 2622-2634.	5.4	25
46	Mu and Delta Opioid Receptors Are Coexpressed and Functionally Interact in the Enteric Nervous System of the Mouse Colon. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 465-483.	4.5	23
47	Role of Nonneuronal TRPV4 Signaling in Inflammatory Processes. Advances in Pharmacology, 2017, 79, 117-139.	2.0	22
48	Application of a chemical probe to detect neutrophil elastase activation during inflammatory bowel disease. Scientific Reports, 2019, 9, 13295.	3.3	22
49	G-Protein–Coupled Receptors Are Dynamic Regulators of Digestion and Targets for Digestive Diseases. Gastroenterology, 2019, 156, 1600-1616.	1.3	22
50	Granulocyte-Macrophage Colony Stimulating Factor As an Indirect Mediator of Nociceptor Activation and Pain. Journal of Neuroscience, 2020, 40, 2189-2199.	3.6	22
51	Endothelin-converting Enzyme 1 and β-Arrestins Exert Spatiotemporal Control of Substance P-induced Inflammatory Signals. Journal of Biological Chemistry, 2014, 289, 20283-20294.	3.4	21
52	Distribution and trafficking of the μ-opioid receptor in enteric neurons of the guinea pig. American Journal of Physiology - Renal Physiology, 2016, 311, G252-G266.	3.4	21
53	The potentially beneficial central nervous system activity profile of ivacaftor and its metabolites. ERJ Open Research, 2018, 4, 00127-2017.	2.6	21
54	Inflammation-associated changes in DOR expression and function in the mouse colon. American Journal of Physiology - Renal Physiology, 2018, 315, G544-G559.	3.4	20

#	Article	IF	CITATIONS
55	Detection and Quantification of Intracellular Signaling Using FRET-Based Biosensors and High Content Imaging. Methods in Molecular Biology, 2015, 1335, 131-161.	0.9	20
56	Protein Kinase D and GÎ ² Î ³ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane. Journal of Biological Chemistry, 2016, 291, 11285-11299.	3.4	19
57	Stimulation of the neurokinin 3 receptor activates protein kinase Cε and protein kinase D in enteric neurons. American Journal of Physiology - Renal Physiology, 2008, 294, G1245-G1256.	3.4	18
58	Antagonism of the proinflammatory and pronociceptive actions of canonical and biased agonists of proteaseâ€activated receptorâ€2. British Journal of Pharmacology, 2016, 173, 2752-2765.	5.4	18
59	Investigation of PKC isoform-specific translocation and targeting of the current of the late afterhyperpolarizing potential of myenteric AH neurons. European Journal of Neuroscience, 2005, 21, 905-913.	2.6	17
60	The distribution of PKC isoforms in enteric neurons, muscle and interstitial cells of the human intestine. Histochemistry and Cell Biology, 2006, 126, 537-548.	1.7	17
61	A lipid-anchored neurokinin 1 receptor antagonist prolongs pain relief by a three-pronged mechanism of action targeting the receptor at the plasma membrane and in endosomes. Journal of Biological Chemistry, 2021, 296, 100345.	3.4	17
62	Diverse Roles of TRPV4 in Macrophages: A Need for Unbiased Profiling. Frontiers in Immunology, 2021, 12, 828115.	4.8	16
63	Sustained endosomal release of a neurokinin-1 receptor antagonist from nanostars provides long-lasting relief of chronic pain. Biomaterials, 2022, 285, 121536.	11.4	16
64	Inflammation and Inflammatory Agents Activate Protein Kinase C Îμ Translocation and Excite Guinea-Pig Submucosal Neurons. Gastroenterology, 2007, 133, 1229-1239.	1.3	15
65	Inflammation-induced abnormalities in the subcellular localization and trafficking of the neurokinin 1 receptor in the enteric nervous system. American Journal of Physiology - Renal Physiology, 2015, 309, G248-G259.	3.4	15
66	Mice expressing fluorescent PAR ₂ reveal that endocytosis mediates colonic inflammation and pain. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
67	PKC δ-isoform translocation and enhancement of tonic contractions of gastrointestinal smooth muscle. American Journal of Physiology - Renal Physiology, 2007, 292, G887-G898.	3.4	13
68	Arresting inflammation: contributions of plasma membrane and endosomal signalling to neuropeptide-driven inflammatory disease. Biochemical Society Transactions, 2013, 41, 137-143.	3.4	13
69	INSL5 activates multiple signalling pathways and regulates GLP-1 secretion in NCI-H716 cells. Journal of Molecular Endocrinology, 2018, 60, 213-224.	2.5	13
70	Localisation and activation of the neurokinin 1 receptor in the enteric nervous system of the mouse distal colon. Cell and Tissue Research, 2014, 356, 319-332.	2.9	11
71	The transient receptor potential vanilloid 4 (TRPV4) ion channel mediates protease activated receptor 1 (PAR1)-induced vascular hyperpermeability. Laboratory Investigation, 2020, 100, 1057-1067.	3.7	11
72	Contributions of bile acids to gastrointestinal physiology as receptor agonists and modifiers of ion channels. American Journal of Physiology - Renal Physiology, 2022, 322, G201-G222.	3.4	11

#	Article	IF	CITATIONS
73	Feeding-dependent activation of enteric cells and sensory neurons by lymphatic fluid: evidence for a neurolymphocrine system. American Journal of Physiology - Renal Physiology, 2014, 306, G686-G698.	3.4	10
74	Protein kinase D and Gβγ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2. Journal of Biological Chemistry, 2019, 294, 10649-10662.	3.4	10
75	G Protein-Coupled Receptor Trafficking and Signalling in the Enteric Nervous System: The Past, Present and Future. Advances in Experimental Medicine and Biology, 2016, 891, 145-152.	1.6	9
76	Clathrin and GRK2/3 inhibitors block δ-opioid receptor internalization in myenteric neurons and inhibit neuromuscular transmission in the mouse colon. American Journal of Physiology - Renal Physiology, 2019, 317, G79-G89.	3.4	9
77	Agonist-dependent development of delta opioid receptor tolerance in the colon. Cellular and Molecular Life Sciences, 2019, 76, 3033-3050.	5.4	9
78	Dendritic cell acquisition of epitope cargo mediated by simple cationic peptide structures. Peptides, 2008, 29, 881-890.	2.4	8
79	Enteric Nervous System Structure and Neurochemistry Related to Function and Neuropathology. , 2012, , 557-581.		8
80	Transcriptional Memory-Like Imprints and Enhanced Functional Activity in γδT Cells Following Resolution of Malaria Infection. Frontiers in Immunology, 2020, 11, 582358.	4.8	8
81	Serotonin-induced vascular permeability is mediated by transient receptor potential vanilloid 4 in the airways and upper gastrointestinal tract of mice. Laboratory Investigation, 2021, 101, 851-864.	3.7	8
82	Mini-review: Dissecting receptor-mediated stimulation of TRPV4 in nociceptive and inflammatory pathways. Neuroscience Letters, 2022, 770, 136377.	2.1	8
83	Positive allosteric modulation of endogenous delta opioid receptor signaling in the enteric nervous system is a potential treatment for gastrointestinal motility disorders. American Journal of Physiology - Renal Physiology, 2022, 322, G66-G78.	3.4	7
84	G protein-coupled receptor trafficking and signaling: new insights into the enteric nervous system. American Journal of Physiology - Renal Physiology, 2019, 316, G446-G452.	3.4	6
85	Inflammation without pain: Immuneâ€derived opioids hold the key. Neurogastroenterology and Motility, 2020, 32, e13787.	3.0	6
86	NONRUMINANT NUTRITION SYMPOSIUM: Involvement of gut neural and endocrine systems in pathological disorders of the digestive tract1,2. Journal of Animal Science, 2012, 90, 1203-1212.	0.5	5
87	Demonstration of elevated levels of active cathepsin S in dextran sulfate sodium colitis using a new activatable probe. Neurogastroenterology and Motility, 2015, 27, 1675-1680.	3.0	5
88	New small molecule fluorescent probes for G protein-coupled receptors: valuable tools for drug discovery. Future Medicinal Chemistry, 2021, 13, 63-90.	2.3	4
89	Targeting of Transient Receptor Potential Channels in Digestive Disease. , 2015, , 385-403.		2
90	562 Protein Kinase D and Gβγ Mediate Protease-Biased Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane. Gastroenterology, 2016, 150, S119.	1.3	0

#	Article	IF	CITATIONS
91	Su1546 Mu and Delta Opioid Receptors are Co-expressed by Myenteric Neurons of the Mouse Intestine. Gastroenterology, 2016, 150, S522.	1.3	0
92	Tu1879 Legumain Is a Novel Biomarker and Therapeutic Target in Inflammatory Bowel Disease. Gastroenterology, 2016, 150, S966.	1.3	0
93	Sa1840 Endogenous Opioids Evoke a Sustained Antinociceptive Effect via Endosomal Signaling in Nociceptive DRG Neurons. Gastroenterology, 2016, 150, S378.	1.3	0
94	182 Inflammation-Associated Changes in Delta Opioid Receptor Function and Distribution in the Mouse Colon. Gastroenterology, 2016, 150, S47.	1.3	0
95	The gut hormone INSL5 activates multiple signalling pathways and regulates GLP-1 secretion in NCI-H716 cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-5-18.	0.0	0
96	Mechanistic overview of how opioid analgesics promote constipation. , 2022, , 227-234.		0