
Matteo Pavese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5348050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combustion synthesis of perovskite-type catalysts for natural gas combustion. Catalysis Today, 2003, 83, 199-211.	4.4	220
2	Electron Beam Melting of Ti-48Al-2Nb-0.7Cr-0.3Si: Feasibility investigation. Intermetallics, 2016, 73, 43-49.	3.9	96
3	Titanium aluminides for aerospace and automotive applications processed by Electron Beam Melting: Contribution of Politecnico di Torino. Metal Powder Report, 2016, 71, 193-199.	0.1	85
4	Cement-based composites containing functionalized carbon fibers. Cement and Concrete Composites, 2018, 88, 165-171.	10.7	77
5	HfB2/SiC as a protective coating for 2D Cf/SiC composites: Effect of high temperature oxidation on mechanical properties. Surface and Coatings Technology, 2008, 202, 2059-2067.	4.8	76
6	Microstructure and Thermal Conductivity of Al–Graphene Composites Fabricated by Powder Metallurgy and Hot Rolling Techniques. Acta Metallurgica Sinica (English Letters), 2017, 30, 675-687.	2.9	74
7	A study of the microstructure and the mechanical properties ofÂanÂAl Si Ni alloy produced via selective laser melting. Journal of Alloys and Compounds, 2017, 695, 1470-1478.	5.5	72
8	Single scan track analyses on aluminium based powders. Journal of Materials Processing Technology, 2018, 255, 17-25.	6.3	70
9	Effect of Process and Post-Process Conditions on the Mechanical Properties of an A357 Alloy Produced via Laser Powder Bed Fusion. Metals, 2017, 7, 68.	2.3	67
10	An Overview of Metal Matrix Nanocomposites Reinforced with Graphene Nanoplatelets; Mechanical, Electrical and Thermophysical Properties. Metals, 2018, 8, 423.	2.3	57
11	An Overview of Key Challenges in the Fabrication of Metal Matrix Nanocomposites Reinforced by Graphene Nanoplatelets. Metals, 2018, 8, 172.	2.3	55
12	Microstructure, mechanical properties and creep of magnesium alloy Elektron21 reinforced with AlN nanoparticles by ultrasound-assisted stirring. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 659, 84-92.	5.6	52
13	Tribological Behavior of Aluminum Alloy AlSi10Mg-TiB2 Composites Produced by Direct Metal Laser Sintering (DMLS). Journal of Materials Engineering and Performance, 2016, 25, 3152-3160.	2.5	44
14	Corrosion behavior of AlSi10Mg alloy produced by laser powder bed fusion under chloride exposure. Corrosion Science, 2019, 152, 101-108.	6.6	41
15	A Novel Approach to Enhance the Mechanical Strength and Electrical and Thermal Conductivity of Cu-GNP Nanocomposites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 333-345.	2.2	38
16	Electron Beam Melting of High Niobium Containing TiAl Alloy: Feasibility Investigation. Steel Research International, 2012, 83, 943-949.	1.8	36
17	Preparation of hierarchical material by chemical grafting of carbon nanotubes onto carbon fibers. Diamond and Related Materials, 2017, 80, 118-124.	3.9	36
18	Potential of SiC multilayer ceramics for high temperature applications in oxidising environment. Ceramics International, 2008, 34, 197-203.	4.8	34

MATTEO PAVESE

#	Article	IF	CITATIONS
19	Microstructural investigation of as-fabricated and heat-treated Inconel 625 and Inconel 718 fabricated by direct metal laser sintering: contribution of Politecnico di Torino and Istituto Italiano di Tecnologia (IIT) di Torino. Metal Powder Report, 2016, 71, 273-278.	0.1	34
20	Laser Powder Bed Fusion of a High Strength Al-Si-Zn-Mg-Cu Alloy. Metals, 2018, 8, 300.	2.3	33
21	On the effect of rapid annealing on the microstructure and mechanical behavior of additively manufactured stainless steel by Laser Powder Bed Fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 828, 142109.	5.6	33
22	Effect of porosity of cordierite preforms on microstructure and mechanical strength of co-continuous ceramic composites. Journal of the European Ceramic Society, 2007, 27, 131-141.	5.7	32
23	Microstructural and Mechanical Characterization of Aluminum Matrix Composites Produced by Laser Powder Bed Fusion. Advanced Engineering Materials, 2017, 19, 1700180.	3.5	31
24	Microstructure and mechanical properties of co-continuous metal/ceramic composites obtained from Reactive Metal Penetration of commercial aluminium alloys into cordierite. Composites Part A: Applied Science and Manufacturing, 2010, 41, 639-645.	7.6	29
25	Grafting carbon nanotubes onto carbon fibres doubles their effective strength and the toughness of the composite. Composites Science and Technology, 2018, 166, 140-149.	7.8	29
26	Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization. Frontiers of Materials Science, 2017, 11, 171-181.	2.2	28
27	New Nanocomposite Materials with Improved Mechanical Strength and Tailored Coefficient of Thermal Expansion for Electro-Packaging Applications. Metals, 2017, 7, 536.	2.3	28
28	Relationship between oxygen content of graphene and mechanical properties of cement-based composites. Cement and Concrete Composites, 2021, 115, 103851.	10.7	28
29	Premixed metal fibre burners based on a Pd catalyst. Catalysis Today, 2003, 83, 19-31.	4.4	27
30	High cycle fatigue study of metal–ceramic co-continuous composites. Scripta Materialia, 2006, 55, 1135-1138.	5.2	26
31	Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 659, 158-164.	5.6	26
32	Effect of Solution Treatment on Precipitation Behaviors, Age Hardening Response and Creep Properties of Elektron21 Alloy Reinforced by AlN Nanoparticles. Materials, 2017, 10, 1380.	2.9	26
33	Grain boundary transition associated intergranular failure analysis at TMAZ/SZ interface of dissimilar AA7475-AA2198 joints by friction stir welding. Materials Letters, 2020, 280, 128557.	2.6	25
34	Development and Characterisation of Aluminium Matrix Nanocomposites AlSi10Mg/MgAl2O4 by Laser Powder Bed Fusion. Metals, 2018, 8, 175.	2.3	24
35	Novel Magnesium Elektron21-AlN Nanocomposites Produced by Ultrasound-Assisted Casting; Microstructure, Thermal and Electrical Conductivity. Materials, 2018, 11, 27.	2.9	23
36	An Analytical Mini-Review on the Compression Strength of Rubberized Concrete as a Function of the Amount of Recycled Tires Crumb Rubber. Materials, 2020, 13, 1234.	2.9	23

MATTEO PAVESE

#	Article	lF	CITATIONS
37	A Novel Cu–GNPs Nanocomposite with Improved Thermal and Mechanical Properties. Acta Metallurgica Sinica (English Letters), 2018, 31, 148-152.	2.9	22
38	Comparative Insight into the Interfacial Phase Evolutions during Solution Treatment of Dissimilar Friction Stir Welded AA2198-AA7475 and AA2198-AA6013 Aluminum Sheets. Materials, 2021, 14, 1290.	2.9	22
39	Effect of dc glow discharge plasma treatment on PET/TiO2 thin film surfaces for enhancement of bioactivity. Colloids and Surfaces B: Biointerfaces, 2010, 79, 53-60.	5.0	20
40	Mesoporous alumina obtained by combustion synthesis without template. Journal of Porous Materials, 2009, 16, 59-64.	2.6	19
41	Hot deformation behavior of Zr-1%Nb alloy: Flow curve analysis and microstructure observations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 366-373.	5.6	19
42	Improving rubber concrete strength and toughness by plasmaâ€induced endâ€ofâ€life tire rubber surface modification. Plasma Processes and Polymers, 2021, 18, 2100081.	3.0	17
43	In situ alloying of AlSi10Mg-5Âwt% Ni through laser powder bed fusion and subsequent heat treatment. Journal of Alloys and Compounds, 2022, 904, 164081.	5.5	16
44	Oxidation of Carbon Nanotubes for Improving the Mechanical and Electrical Properties of Oil-Well Cement-Based Composites. ACS Applied Nano Materials, 2022, 5, 6671-6678.	5.0	16
45	Investigation on surface properties of TiO2 films modified by DC glow discharge plasma. Current Applied Physics, 2009, 9, 1032-1037.	2.4	15
46	Mechanical properties of mortar containing waste plastic (PVC) as aggregate partial replacement. Case Studies in Construction Materials, 2020, 13, e00467.	1.7	15
47	Mechanical properties of mortar containing recycled Acanthocardia tuberculata seashells as aggregate partial replacement. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2021, 60, 206-210.	1.9	15
48	Preparation of C4 ceramic/metal composites by reactive metal penetration of commercial ceramics. Composites Science and Technology, 2006, 66, 350-356.	7.8	14
49	A Continuous 3D-Graphene Network to Overcome Threshold Issues and Contact Resistance in Thermally Conductive Graphene Nanocomposites. Journal of Nanomaterials, 2017, 2017, 1-11.	2.7	14
50	Oxidation Resistance of Multilayer SiC for Space Vehicle Thermal Protection Systems. Advanced Engineering Materials, 2010, 12, 617-622.	3.5	13
51	Preparation and properties of NiAl(Si)/Al2O3 co-continuous composites obtained by reactive metal penetration. Composites Science and Technology, 2009, 69, 1777-1782.	7.8	12
52	Polyvinyl butyralâ€based composites with carbon nanotubes: Efficient dispersion as a key to high mechanical properties. Polymer Composites, 2020, 41, 3627-3637.	4.6	12
53	NiAl(Si)/Al2O3 co-continuous composites by double reactive metal penetration into silica preforms. Intermetallics, 2008, 16, 580-583.	3.9	10
54	Effect of Sample Preparation on the Microstructural Evaluation of Al–CNPs Nanocomposites. Metallography, Microstructure, and Analysis, 2017, 6, 619-622.	1.0	10

MATTEO PAVESE

#	Article	IF	CITATIONS
55	Compression Behaviour of Thick Vertically Aligned Carbon Nanotube Blocks. Journal of Nanoscience and Nanotechnology, 2010, 10, 4240-4245.	0.9	9
56	Determination of critical condition for initiation of dynamic recrystallisation in Zr-1%Nb alloy. Journal of Alloys and Compounds, 2018, 757, 1-7.	5.5	9
57	Hydrophobic cellulose ester as a sustainable material for simple and efficient water purification processes from fatty oils contamination. Wood Science and Technology, 2019, 53, 249-261.	3.2	9
58	Self passivating behavior of multilayer SiC under simulated atmospheric re-entry conditions. Journal of the European Ceramic Society, 2012, 32, 4435-4445.	5.7	8
59	Instrumented Indentation Test: Contact Stiffness Evaluation in the Nano-range. Nanomanufacturing and Metrology, 2019, 2, 16-25.	3.0	8
60	Reactive spontaneous infiltration of Al-activated TiO2 by molten aluminum. Transactions of Nonferrous Metals Society of China, 2019, 29, 657-666.	4.2	7
61	Corrosion Behavior of <scp><scp>SiC</scp> Laminate Under Decomposed Sulfuric Acid at 850°C. Journal of the American Ceramic Society, 2012, 95, 2627-2634.</scp>	3.8	6
62	Understanding Friction and Wear Behavior at the Nanoscale of Aluminum Matrix Composites Produced by Laser Powder Bed Fusion. Advanced Engineering Materials, 2020, 22, 1900815.	3.5	6
63	Recycling of WEEE Plastics Waste in Mortar: The Effects on Mechanical Properties. Recycling, 2021, 6, 70.	5.0	6
64	Thermophysical Properties of Short Carbon Fiber/SiC Multilayer Composites Prepared by Tape Casting and Pressureless Sintering. International Journal of Applied Ceramic Technology, 2015, 12, 510-521.	2.1	5
65	A facile method to oxidize carbon nanotubes in controlled flow of oxygen at 350°C. Materials Letters, 2021, 283, 128816.	2.6	4
66	Facile photo-induced growth of polymeric nanostructures onto cellulose: The poly(ethylene glycol) methacrylate (PEGMA)@cellulose case study. Materials Letters, 2018, 227, 202-204.	2.6	3
67	Preparation and prospective application of short carbon fiber/SiC multilayer composites by tape casting. World Journal of Engineering, 2011, 8, 331-334.	1.6	1
68	A First Assessment of Carbon Nanotubes Grown on Oil-Well Cement via Chemical Vapor Deposition. Nanomaterials, 2022, 12, 2346.	4.1	1