
Ilja A Likhtarev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5347972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Cohort Study of Thyroid Cancer and Other Thyroid Diseases After the Chornobyl Accident: Thyroid Cancer in Ukraine Detected During First Screening. Journal of the National Cancer Institute, 2006, 98, 897-903.	3.0	206
2	Thyroid carcinoma in children and adolescents in ukraine after the Chernobyl nuclear accident. , 1999, 86, 149-156.		149
3	Thyroid cancer risk to children calculated. Nature, 1998, 392, 31-32.	13.7	110
4	The first international intercomparison of EPR-dosimetry with teeth: First results. Applied Radiation and Isotopes, 1996, 47, 1281-1286.	0.7	77
5	A Screening Study of Thyroid Cancer and Other Thyroid Diseases among Individuals Exposed in Utero to Iodine-131 from Chernobyl Fallout. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 899-906.	1.8	68
6	CHERNOBYL ACCIDENT: RETROSPECTIVE AND PROSPECTIVE ESTIMATES OF EXTERNAL DOSE OF THE POPULATION OF UKRAINE. Health Physics, 2002, 82, 290-303.	0.3	62
7	Gene signature of the post-Chernobyl papillary thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1267-1277.	3.3	61
8	MOVEMENT OF RADIONUCLIDES IN TERRESTRIAL ECOSYSTEMS BY PHYSICAL PROCESSES. Health Physics, 2002, 82, 669-679.	0.3	57
9	Questionnaire- and Measurement-Based Individual Thyroid Doses in Ukraine Resulting from the Chornobyl Nuclear Reactor Accident. Radiation Research, 2006, 166, 271-286.	0.7	53
10	Thyroid Cancer Study among Ukrainian Children Exposed to Radiation after the Chornobyl Accident. Health Physics, 2014, 106, 370-396.	0.3	52
11	Ukrainian Thyroid Doses After the Chernobyl Accident. Health Physics, 1993, 64, 594-599.	0.3	50
12	Post-Chornobyl Thyroid Cancers in Ukraine. Report 1: Estimation of Thyroid Doses. Radiation Research, 2005, 163, 125-136.	0.7	50
13	Post-Chornobyl Thyroid Cancers in Ukraine. Report 2: Risk Analysis. Radiation Research, 2006, 166, 375-386.	0.7	49
14	Radiocontamination patterns and possible health consequences of the accident at the Chernobyl nuclear power station. Journal of Radiological Protection, 1990, 10, 3-29.	0.6	47
15	INTERNAL EXPOSURE FROM THE INGESTION OF FOODS CONTAMINATED BY 137Cs AFTER THE CHERNOBYL ACCIDENT—REPORT 2. INGESTION DOSES OF THE RURAL POPULATION OF UKRAINE UP TO 12 Y AFTER THE ACCIDENT (1986–1997). Health Physics, 2000, 79, 341-357.	0.3	44
16	Impact of Uncertainties in Exposure Assessment on Estimates of Thyroid Cancer Risk among Ukrainian Children and Adolescents Exposed from the Chernobyl Accident. PLoS ONE, 2014, 9, e85723.	1.1	44
17	A CONSISTENT RADIONUCLIDE VECTOR AFTER THE CHERNOBYL ACCIDENT. Health Physics, 2002, 82, 141-156.	0.3	41
18	COMPARISON OF RETROSPECTIVE LUMINESCENCE DOSIMETRY WITH COMPUTATIONAL MODELING IN TWO HIGHLY CONTAMINATED SETTLEMENTS DOWNWIND OF THE CHERNOBYL NPP. Health Physics, 2004, 86, 25-41.	0.3	41

Ilja A Likhtarev

#	Article	IF	CITATIONS
19	A Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident: Dose-Response Analysis of Thyroid Follicular Adenomas Detected during First Screening in Ukraine (1998-2000). American Journal of Epidemiology, 2007, 167, 305-312.	1.6	41
20	Retrospective Reconstruction of Individual and Collective External Gamma Doses of Population Evacuated After the Chernobyl Accident. Health Physics, 1994, 66, 643-652.	0.3	40
21	Autoimmune Thyroiditis and Exposure to Iodine 131 in the Ukrainian Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident: Results from the First Screening Cycle (1998–2000). Journal of Clinical Endocrinology and Metabolism, 2006, 91, 4344-4351.	1.8	40
22	Subclinical Hypothyroidism after Radioiodine Exposure: Ukrainian–American Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident (1998–2000). Environmental Health Perspectives, 2009, 117, 745-750.	2.8	39
23	Remediation strategies for rural territories contaminated by the Chernobyl accident. Journal of Environmental Radioactivity, 2001, 56, 51-76.	0.9	37
24	Thyroid dose assessment for the Chernigov region (Ukraine): Estimation based on1311 thyroid measurements and extrapolation of the results to districts without monitoring. Radiation and Environmental Biophysics, 1994, 33, 149-166.	0.6	32
25	Internal Exposure from the Ingestion of Foods Contaminated by 137Cs after the Chernobyl Accident. Report 1. General Model. Health Physics, 1996, 70, 297-317.	0.3	31
26	Uncertainties in thyroid dose reconstruction after Chernobyl. Radiation Protection Dosimetry, 2003, 105, 601-608.	0.4	31
27	RADIATION DOSIMETRY FOR HIGHLY CONTAMINATED BELARUSIAN, RUSSIAN AND UKRAINIAN POPULATIONS, AND FOR LESS CONTAMINATED POPULATIONS IN EUROPE. Health Physics, 2007, 93, 487-501.	0.3	30
28	A Study of Certain Characteristics of Strontium Metabolism in a Homogeneous Group of Human Subjects. Health Physics, 1975, 28, 49-60.	0.3	29
29	Chernobyl Experience in Field of Retrospective Dosimetry: Reconstruction of Doses to the Population and Liquidators Involved in the Accident. Radiation Protection Dosimetry, 1998, 77, 91-95.	0.4	29
30	Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. British Journal of Cancer, 2015, 113, 1556-1564.	2.9	29
31	Evaluation of the 1311 Thyroid-Monitoring Measurements Performed in Ukraine During May and June of 1986. Health Physics, 1995, 69, 6-15.	0.3	28
32	Thyroid cancer incidence in the Ukraine after the Chernobyl accident: comparison with spontaneous incidences. Radiation and Environmental Biophysics, 1997, 36, 195-199.	0.6	25
33	ESTIMATION OF THE THYROID DOSES FOR UKRAINIAN CHILDREN EXPOSED IN UTERO AFTER THE CHERNOBYL ACCIDENT. Health Physics, 2011, 100, 583-593.	0.3	25
34	Dose-dependent expression of CLIP2 in post-Chernobyl papillary thyroid carcinomas. Carcinogenesis, 2015, 36, 748-756.	1.3	25
35	Thyroid cancer in Ukraine after the Chernobyl accident (in the framework of the Ukraine–US Thyroid) Tj ETQq1	1 0.7843	14 rgBT /Ove 22
36	RECONSTRUCTION OF THE INGESTION DOSES RECEIVED BY THE POPULATION EVACUATED FROM THE SETTLEMENTS IN THE 30-KM ZONE AROUND THE CHERNOBYL REACTOR. Health Physics, 2002, 82, 173-181.	0.3	21

ILJA A LIKHTAREV

#	Article	IF	CITATIONS
37	Reconstruction of individual thyroid doses to the Ukrainian subjects enrolled in the Chernobyl Tissue Bank. Radiation Protection Dosimetry, 2013, 156, 407-423.	0.4	20
38	Neonatal outcomes following exposure in utero to fallout from Chernobyl. European Journal of Epidemiology, 2017, 32, 1075-1088.	2.5	20
39	Attenuation effects on the kerma rates in air after cesium depositions on grasslands. Radiation and Environmental Biophysics, 1994, 33, 251-267.	0.6	19
40	Contribution of internal exposures to the radiological consequences of the Chernobyl accident. Radiation Protection Dosimetry, 2007, 127, 491-496.	0.4	18
41	Exchange Kinetics and Dosimetry of Tritium Oxide in Man for Different Routes of Administration. Health Physics, 1974, 27, 367-375.	0.3	17
42	Thyroid dose and thyroid cancer incidence after the Chernobyl accident: assessments for the Zhytomyr region (Ukraine). Radiation and Environmental Biophysics, 1998, 36, 261-273.	0.6	16
43	Estimating Thyroid Masses for Children, Infants, and Fetuses in Ukraine Exposed to 1311 From the Chernobyl Accident. Health Physics, 2013, 104, 78-86.	0.3	16
44	Use of subjective and nonsubjective methodologies to evaluate lens radiation damage in exposed populations — an overview. Radiation and Environmental Biophysics, 1996, 35, 137-144.	0.6	15
45	RECONSTRUCTION OF THE INHALATION DOSE IN THE 30-KM ZONE AFTER THE CHERNOBYL ACCIDENT. Health Physics, 2002, 82, 157-172.	0.3	15
46	The Metabolism of 3H Compounds and Limits for Intakes by Workers. Health Physics, 1984, 47, 761-773.	0.3	14
47	Estimation of radiation risk in presence of classical additive and Berkson multiplicative errors in exposure doses. Biostatistics, 2016, 17, 422-436.	0.9	13
48	Internal Dosimetry Support System: Multipurpose Research Computer Code. Radiation Protection Dosimetry, 1998, 79, 371-374.	0.4	11
49	Analysis of the Effectiveness of Emergency Countermeasures in the 30-km Zone During the Early Phase of the Chernobyl Accident. Health Physics, 1994, 67, 541-544.	0.3	10
50	Thyroid Doses Resulting from the Ukraine Chernobyl Accident-part I. Health Physics, 1994, 66, 137-146.	0.3	10
51	Summary of the 15-year observation of thyroid cancer among Ukrainian children after the Chernobyl accident. International Congress Series, 2002, 1234, 77-83.	0.2	6
52	Comparison of Transcriptomic Signature of Post-Chernobyl and Postradiotherapy Thyroid Tumors. Thyroid, 2013, 23, 1390-1400.	2.4	6
53	The need for changes in ICRP policy: some examples based on the Chernobyl experience in Ukraine. Journal of Radiological Protection, 2002, 22, 163-173.	0.6	3
54	Thyroid Cancer in Ukraine After the Chernobyl Accident: Incidence, Pathology, Treatment, and		3

Molecular Biology. , 2009, , 305-316.

Ilja A Likhtarev

#	Article	IF	CITATIONS
55	Monitoring of Individual Doses of Populations Residing in the Territories Contaminated after Chernobyl Accident. Radiation Protection Dosimetry, 1999, 85, 137-139.	0.4	2
56	Thyroid gland and radiation (fundamental and applied aspects): 20Âyears after the Chernobyl accident. International Congress Series, 2007, 1299, 46-53.	0.2	2
57	Distribution of the absorbed photon dose in a human phantom. Soviet Atomic Energy, 1989, 67, 890-894.	0.1	1
58	Characteristics of the photon radiation field of flat sources in tissue-equivalent plates. Soviet Atomic Energy, 1989, 67, 829-836.	0.1	1
59	WORKER HEALTH AND SAFETY ISSUES IN REINFORCING THE ENTOMBMENT OF THE CHERNOBYL REACTOR. Health Physics, 2007, 93, 480-486.	0.3	1
60	Thyroid Cancer Risk in Ukraine Following the Chernobyl Accident (The Ukrainian–American Cohort) Tj ETQq0 () 0 rgBT /C	Overlock 10 T
61	The action of parathyroid hormone and Ca45 on rat bone tissue. Bulletin of Experimental Biology and Medicine, 1974, 77, 453-455.	0.3	0
62	New radiation safety standards for tritium componds. Soviet Atomic Energy, 1984, 56, 102-107.	0.1	0
63	Design and operation of the internal dosimetry program for the Chornobyl 'shelter implementation plan'. Radiation Protection Dosimetry, 2007, 127, 321-324.	0.4	0
64	Individual monitoring of internal exposure at the shelter object. Radiation Protection Dosimetry, 2011, 144, 367-370.	0.4	0

65	In Memoriam Ilya Aronovich Likhtarev (1935–2017). Radiation and Environmental Biophysics, 2017, 56, 201-202.	0.6	0	
----	---	-----	---	--