Sander M Houten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5347650/publications.pdf

Version: 2024-02-01

178 178 178 21292 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006, 439, 484-489.	27.8	1,818
2	Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. Journal of Clinical Investigation, 2004, 113, 1408-1418.	8.2	1,069
3	A general introduction to the biochemistry of mitochondrial fatty acid βâ€oxidation. Journal of Inherited Metabolic Disease, 2010, 33, 469-477.	3.6	678
4	Specific SIRT1 Activation Mimics Low Energy Levels and Protects against Diet-Induced Metabolic Disorders by Enhancing Fat Oxidation. Cell Metabolism, 2008, 8, 347-358.	16.2	665
5	Acylcarnitines. Diabetes, 2013, 62, 1-8.	0.6	551
6	Serum Bile Acids Are Higher in Humans With Prior Gastric Bypass: Potential Contribution to Improved Glucose and Lipid Metabolism. Obesity, 2009, 17, 1671-1677.	3.0	501
7	Endocrine functions of bile acids. EMBO Journal, 2006, 25, 1419-1425.	7.8	498
8	The Biochemistry and Physiology of Mitochondrial Fatty Acid \hat{l}^2 -Oxidation and Its Genetic Disorders. Annual Review of Physiology, 2016, 78, 23-44.	13.1	490
9	Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nature Genetics, 1999, 22, 175-177.	21.4	480
10	The metabolic footprint of aging in mice. Scientific Reports, 2011, 1, 134.	3.3	440
11	Systems proteomics of liver mitochondria function. Science, 2016, 352, aad0189.	12.6	257
12	PARP-2 Regulates SIRT1 Expression and Whole-Body Energy Expenditure. Cell Metabolism, 2011, 13, 450-460.	16.2	231
13	Multilayered Genetic and Omics Dissection of Mitochondrial Activity in a Mouse Reference Population. Cell, 2014, 158, 1415-1430.	28.9	222
14	Lowering Bile Acid Pool Size with a Synthetic Farnesoid X Receptor (FXR) Agonist Induces Obesity and Diabetes through Reduced Energy Expenditure. Journal of Biological Chemistry, 2011, 286, 26913-26920.	3.4	221
15	Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I. Cell Metabolism, 2010, 12, 283-294.	16.2	172
16	Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPARÂ hypomorphic mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14457-14462.	7.1	171
17	The enzymology of mitochondrial fatty acid betaâ€oxidation and its application to followâ€up analysis of positive neonatal screening results. Journal of Inherited Metabolic Disease, 2010, 33, 479-494.	3.6	166
18	Lack of isoprenoid products raises ex vivo interleukin-1? secretion in hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis and Rheumatism, 2002, 46, 2794-2803.	6.7	165

#	Article	IF	CITATIONS
19	Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Human Molecular Genetics, 2014, 23, 3513-3522.	2.9	140
20	Compromised Intestinal Lipid Absorption in Mice with a Liver-Specific Deficiency of Liver Receptor Homolog 1. Molecular and Cellular Biology, 2007, 27, 8330-8339.	2.3	135
21	Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction. Journal of Hepatology, 2016, 65, 1198-1208.	3.7	133
22	Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1397-E1407.	3.5	132
23	Peroxisome proliferatorâ€activated receptorâ€Î³: too much of a good thing causes harm. EMBO Reports, 2004, 5, 142-147.	4.5	128
24	Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. Journal of Lipid Research, 2012, 53, 1296-1303.	4.2	127
25	Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Scientific Reports, 2012, 2, 425.	3.3	126
26	PGC-1î±. Cell, 2004, 119, 5-7.	28.9	113
27	Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. Journal of Clinical Investigation, 2004, 113, 1408-1418.	8.2	113
28	Mitochondrial long chain fatty acid \hat{l}^2 -oxidation in man and mouse. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 806-815.	2.4	109
29	Fasting Serum Taurine-Conjugated Bile Acids Are Elevated in Type 2 Diabetes and Do Not Change With Intensification of Insulin. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1442-1451.	3.6	104
30	Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 844-852.	2.4	100
31	Intestinal Inflammation Modulates the Expression of ACE2 and TMPRSS2 and Potentially Overlaps With the Pathogenesis of SARS-CoV-2–related Disease. Gastroenterology, 2021, 160, 287-301.e20.	1.3	98
32	Temperature dependence of mutant mevalonate kinase activity as a pathogenic factor in Hyper-IgD and periodic fever syndrome. Human Molecular Genetics, 2002, 11, 3115-3124.	2.9	97
33	Peroxisome Proliferator-activated Receptor (PPAR)-2 Controls Adipocyte Differentiation and Adipose Tissue Function through the Regulation of the Activity of the Retinoid X Receptor/PPARÎ ³ Heterodimer. Journal of Biological Chemistry, 2007, 282, 37738-37746.	3.4	97
34	Post-natal myogenic and adipogenic developmental. Nucleus, 2011, 2, 195-207.	2.2	97
35	Carrier frequency of the V377I (1129G>A) MVK mutation, associated with Hyper-IgD and periodic fever syndrome, in the Netherlands. European Journal of Human Genetics, 2003, 11, 196-200.	2.8	93
36	Bile Acid Binding Resin Improves Metabolic Control through the Induction of Energy Expenditure. PLoS ONE, 2012, 7, e38286.	2.5	93

#	Article	IF	Citations
37	A key role for the peroxisomal (i) ABCD2 (i) transporter in fatty acid homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E211-E221.	3.5	91
38	Organization of the mevalonate kinase (MVK) gene and identification of novel mutations causing mevalonic aciduria and hyperimmunoglobulinaemia D and periodic fever syndrome. European Journal of Human Genetics, 2001, 9, 253-259.	2.8	85
39	Biallelic Mutations in MRPS34 Lead to Instability of the Small Mitoribosomal Subunit and Leigh Syndrome. American Journal of Human Genetics, 2017, 101, 239-254.	6.2	83
40	Peroxisomes can oxidize medium―and long hain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB Journal, 2019, 33, 4355-4364.	0.5	82
41	The small heterodimer partner is a gonadal gatekeeper of sexual maturation in male mice. Genes and Development, 2007, 21, 303-315.	5.9	81
42	A Next Generation Multiscale View of Inborn Errors of Metabolism. Cell Metabolism, 2016, 23, 13-26.	16.2	79
43	Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165720.	3.8	78
44	Biochemical and genetic aspects of mevalonate kinase and its deficiency. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1529, 19-32.	2.4	76
45	Peroxisomes contribute to the acylcarnitine production when the carnitine shuttle is deficient. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1467-1474.	2.4	74
46	Peroxisomes and bile acid biosynthesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1427-1440.	4.1	73
47	SUMOylation-Dependent LRH-1/PROX1 Interaction Promotes Atherosclerosis by Decreasing Hepatic Reverse Cholesterol Transport. Cell Metabolism, 2014, 20, 603-613.	16.2	73
48	Increased intramyocellular lipid content but normal skeletal muscle mitochondrial oxidative capacity throughout the pathogenesis of type 2 diabetes. FASEB Journal, 2008, 22, 3947-3955.	0.5	70
49	Glutamine Synthetase in Muscle Is Required for Glutamine Production during Fasting and Extrahepatic Ammonia Detoxification. Journal of Biological Chemistry, 2010, 285, 9516-9524.	3.4	69
50	Fasting-Induced Myocardial Lipid Accumulation in Long-Chain Acyl-CoA Dehydrogenase Knockout Mice Is Accompanied by Impaired Left Ventricular Function. Circulation: Cardiovascular Imaging, 2011, 4, 558-565.	2.6	69
51	Substrate specificity of human carnitine acetyltransferase: Implications for fatty acid and branched-chain amino acid metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 773-779.	3.8	69
52	PLPHP deficiency: clinical, genetic, biochemical, and mechanistic insights. Brain, 2019, 142, 542-559.	7.6	67
53	Identification and Characterization of Three Novel Missense Mutations in Mevalonate Kinase cDNA Causing Mevalonic Aciduria, a Disorder of Isoprene Biosynthesis. Human Molecular Genetics, 1999, 8, 1523-1528.	2.9	65
54	Aberrant protein acylation is a common observation in inborn errors of acyl oA metabolism. Journal of Inherited Metabolic Disease, 2014, 37, 709-714.	3 . 6	65

#	Article	IF	CITATIONS
55	Muscle acylcarnitines during short-term fasting in lean healthy men. Clinical Science, 2009, 116, 585-592.	4.3	64
56	Mitochondrial NADP(H) deficiency due to a mutation in NADK2 causes dienoyl-CoA reductase deficiency with hyperlysinemia. Human Molecular Genetics, 2014, 23, 5009-5016.	2.9	63
57	Regulation of Isoprenoid/Cholesterol Biosynthesis in Cells from Mevalonate Kinase-deficient Patients. Journal of Biological Chemistry, 2003, 278, 5736-5743.	3.4	62
58	In Vivo Imaging of Farnesoid X Receptor Activity Reveals the Ileum as the Primary Bile Acid Signaling Tissue. Molecular Endocrinology, 2007, 21, 1312-1323.	3.7	62
59	Differential effects of short- and long-term high-fat diet feeding on hepatic fatty acid metabolism in rats. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 441-451.	2.4	61
60	Impaired amino acid metabolism contributes to fasting-induced hypoglycemia in fatty acid oxidation defects. Human Molecular Genetics, 2013, 22, 5249-5261.	2.9	61
61	Hyper IgD syndrome (HIDS) associated with in vitro evidence of defective monocyte TNFRSF1A shedding and partial response to TNF receptor blockade with etanercept. Clinical and Experimental Immunology, 2002, 130, 484-488.	2.6	60
62	Plasma acylcarnitines inadequately reflect tissue acylcarnitine metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 987-994.	2.4	60
63	Critical assessment of human metabolic pathway databases: a stepping stone for future integration. BMC Systems Biology, 2011, 5, 165.	3.0	59
64	Characterization of D-3-hydroxybutyrylcarnitine (ketocarnitine): an identified ketosis-induced metabolite. Metabolism: Clinical and Experimental, 2012, 61, 966-973.	3.4	59
65	Carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase are involved in the mitochondrial synthesis and export of acylcarnitines. FASEB Journal, 2013, 27, 2039-2044.	0.5	58
66	Biochemical Competition Makes Fatty-Acid \hat{l}^2 -Oxidation Vulnerable to Substrate Overload. PLoS Computational Biology, 2013, 9, e1003186.	3.2	58
67	A mechanistic framework for cardiometabolic and coronary artery diseases., 2022, 1, 85-100.		51
68	Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast-versus slow-twitch muscle contractile function in C57BL/6J mice. Journal of Nutritional Biochemistry, 2015, 26, 155-164.	4.2	50
69	Genetic basis of alphaâ€aminoadipic and alphaâ€ketoadipic aciduria. Journal of Inherited Metabolic Disease, 2015, 38, 873-879.	3.6	50
70	Human geroprotector discovery by targeting the converging subnetworks of aging and age-related diseases. GeroScience, 2020, 42, 353-372.	4.6	50
71	A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine. American Journal of Physiology - Renal Physiology, 2008, 294, G1171-G1180.	3.4	49
72	ACAD9, a complex I assembly factor with a moonlighting function in fatty acid oxidation deficiencies. Human Molecular Genetics, 2014, 23, 1311-1319.	2.9	49

#	Article	IF	CITATIONS
73	Fatty acid oxidation flux predicts the clinical severity of VLCAD deficiency. Genetics in Medicine, 2015, 17, 989-994.	2.4	48
74	Pyruvate dehydrogenase kinase 4 expression is synergistically induced by AMP-activated protein kinase and fatty acids. Cellular and Molecular Life Sciences, 2009, 66, 1283-1294.	5.4	47
75	Effects of Insulin on Ketogenesis Following Fasting in Lean and Obese Men. Obesity, 2009, 17, 1326-1331.	3.0	47
76	Increased mitochondrial content rescues <i>in vivo</i> muscle oxidative capacity in longâ€term highâ€fatâ€dietâ€fed rats. FASEB Journal, 2010, 24, 1354-1364.	0.5	47
77	Bile acids alter male fertility through G-protein-coupled bile acid receptor 1 signaling pathways in mice. Hepatology, 2014 , 60 , 1054 - 1065 .	7.3	47
78	Optimizing anesthetic regimen for surgery in mice through minimization of hemodynamic, metabolic, and inflammatory perturbations. Experimental Biology and Medicine, 2014, 239, 737-746.	2.4	47
79	Absence of functional peroxisomes does not lead to deficiency of enzymes involved in cholesterol biosynthesis. Journal of Lipid Research, 2002, 43, 90-98.	4.2	46
80	A PPARÎ ³ -Bnip3 Axis Couples Adipose Mitochondrial Fusion-Fission Balance to Systemic Insulin Sensitivity. Diabetes, 2016, 65, 2591-2605.	0.6	45
81	The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Molecular Genetics and Metabolism, 2020, 131, 14-22.	1.1	45
82	Transorgan fluxes in a porcine model reveal a central role for liver in acylcarnitine metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E256-E264.	3.5	43
83	The enterohepatic nuclear receptors are major regulators of the enterohepatic circulation of bile salts. Annals of Medicine, 2004, 36, 482-491.	3.8	41
84	Genetic basis of hyperlysinemia. Orphanet Journal of Rare Diseases, 2013, 8, 57.	2.7	41
85	Functional redundancy of mitochondrial enoylâ€CoA isomerases in the oxidation of unsaturated fatty acids. FASEB Journal, 2012, 26, 4316-4326.	0.5	40
86	Prevention and reversal of hepatic steatosis with a high-protein diet in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 685-695.	3.8	40
87	Myocardial energy shortage and unmet anaplerotic needs in the fasted long-chain acyl-CoA dehydrogenase knockout mouse. Cardiovascular Research, 2013, 100, 441-449.	3.8	40
88	Bezafibrate lowers very longâ€chain fatty acids in Xâ€linked adrenoleukodystrophy fibroblasts by inhibiting fatty acid elongation. Journal of Inherited Metabolic Disease, 2012, 35, 1137-1145.	3.6	39
89	Increased cardiac fatty acid oxidation in a mouse model with decreased malonyl-CoA sensitivity of CPT1B. Cardiovascular Research, 2018, 114, 1324-1334.	3.8	37
90	High-protein diets prevent steatosis and induce hepatic accumulation of monomethyl branched-chain fatty acids. Journal of Nutritional Biochemistry, 2014, 25, 1263-1274.	4.2	36

#	Article	IF	CITATION
91	Deficiency of the Mitochondrial NAD Kinase Causes Stress-Induced Hepatic Steatosis in Mice. Gastroenterology, 2018, 154, 224-237.	1.3	35
92	An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease. Nature Communications, 2021, 12, 547.	12.8	35
93	Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency. PLoS ONE, 2016, 11, e0147818.	2.5	35
94	PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 2022, 29, 559-576.e7.	11.1	34
95	Manipulation of isoprenoid biosynthesis as a possible therapeutic option in mevalonate kinase deficiency. Arthritis and Rheumatism, 2006, 54, 2306-2313.	6.7	33
96	Role of Medium- and Short-Chain L-3-Hydroxyacyl-CoA Dehydrogenase in the Regulation of Body Weight and Thermogenesis. Endocrinology, 2011, 152, 4641-4651.	2.8	33
97	Absence of functional peroxisomes does not lead to deficiency of enzymes involved in cholesterol biosynthesis. Journal of Lipid Research, 2002, 43, 90-8.	4.2	33
98	Nonorthologous Gene Displacement of Phosphomevalonate Kinase. Molecular Genetics and Metabolism, 2001, 72, 273-276.	1.1	32
99	Plasma FGF-19 Levels are Increased in Patients with Post-Bariatric Hypoglycemia. Obesity Surgery, 2019, 29, 2092-2099.	2.1	32
100	Carnitine supplementation attenuates myocardial lipid accumulation in longâ€chain acylâ€CoA dehydrogenase knockout mice. Journal of Inherited Metabolic Disease, 2013, 36, 973-981.	3.6	31
101	A Mitochondrial Expatriate: Nuclear Pyruvate Dehydrogenase. Cell, 2014, 158, 9-10.	28.9	30
102	Novel, Compound Heterozygous, Single-Nucleotide Variants in <i>MARS2</i> Associated with Developmental Delay, Poor Growth, and Sensorineural Hearing Loss. Human Mutation, 2015, 36, 587-592.	2.5	29
103	Mevalonic aciduria in 12 unrelated patients with hyperimmunoglobulinaemia D and periodic fever syndrome. Journal of Inherited Metabolic Disease, 2000, 23, 363-366.	3.6	27
104	Metabolomics: Unraveling the chemical individuality of common human diseases. Annals of Medicine, 2009, 41, 402-407.	3.8	27
105	Integrative Analysis of the Inflammatory Bowel Disease Serum Metabolome Improves Our Understanding of Genetic Etiology and Points to Novel Putative Therapeutic Targets. Gastroenterology, 2022, 162, 828-843.e11.	1.3	26
106	Assessment of plasma acylcarnitines before and after weight loss in obese subjects. Archives of Biochemistry and Biophysics, 2016, 606, 73-80.	3.0	25
107	Muscle MRI in patients with longâ€chain fatty acid oxidation disorders. Journal of Inherited Metabolic Disease, 2014, 37, 405-413.	3.6	24
108	Inter-tissue coexpression network analysis reveals DPP4 as an important gene in heart to blood communication. Genome Medicine, 2016, 8, 15.	8.2	24

#	Article	IF	CITATIONS
109	Improving the description of metabolic networks: the TCA cycle as example. FASEB Journal, 2012, 26, 3625-3636.	0.5	22
110	Pioglitazone treatment restores <i>in vivo</i> muscle oxidative capacity in a rat model of diabetes. Diabetes, Obesity and Metabolism, 2015, 17, 52-60.	4.4	22
111	Empagliflozin Decreases Lactate Generation in an NHE-1 Dependent Fashion and Increases α-Ketoglutarate Synthesis From Palmitate in Type II Diabetic Mouse Hearts. Frontiers in Cardiovascular Medicine, 2020, 7, 592233.	2.4	22
112	DHTKD1 and OGDH display substrate overlap in cultured cells and form a hybrid 2-oxo acid dehydrogenase complex in vivo. Human Molecular Genetics, 2020, 29, 1168-1179.	2.9	21
113	Lipid and Bile Acid Analysis. Current Protocols in Molecular Biology, 2006, 75, Unit 29B.2.	2.9	20
114	A Diet Rich in Unsaturated Fatty Acids Prevents Progression Toward Heart Failure in a Rabbit Model of Pressure and Volume Overload. Circulation: Heart Failure, 2012, 5, 376-384.	3.9	20
115	Changes in the Metabolome in Response to Low-Dose Exposure to Environmental Chemicals Used in Personal Care Products during Different Windows of Susceptibility. PLoS ONE, 2016, 11, e0159919.	2.5	20
116	The Effects of Long―or Mediumâ€Chain Fat Diets on Glucose Tolerance and Myocellular Content of Lipid Intermediates in Rats. Obesity, 2011, 19, 792-799.	3.0	19
117	In vivomouse myocardial 31P MRS using three-dimensional image-selectedin vivospectroscopy (3D ISIS): technical considerations and biochemical validations. NMR in Biomedicine, 2015, 28, 1218-1227.	2.8	19
118	A next generation sequencing based approach to identify extracellular vesicle mediated mRNA transfers between cells. BMC Genomics, 2017, 18, 987.	2.8	19
119	Molecular basis of classical mevalonic aciduria and the hyperimmunoglobulinaemia D and periodic fever syndrome: High frequency of 3 mutations in the mevalonate kinase gene. Journal of Inherited Metabolic Disease, 2000, 23, 367-370.	3.6	18
120	Characterization of l-aminocarnitine, an inhibitor of fatty acid oxidation. Molecular Genetics and Metabolism, 2008, 93, 403-410.	1.1	18
121	Effect of Statins on the Viability of Macrophages and Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2010, 55, 269-275.	1.9	17
122	Heterozygous Pathogenic Variant in <i>DACT1</i> Causes an Autosomal-Dominant Syndrome with Features Overlapping Townes-Brocks Syndrome. Human Mutation, 2017, 38, 373-377.	2.5	17
123	Deletion of 2â€aminoadipic semialdehyde synthase limits metabolite accumulation in cell and mouse models for glutaric aciduria type 1. Journal of Inherited Metabolic Disease, 2020, 43, 1154-1164.	3.6	17
124	NLRX1 Deletion Increases Ischemia-Reperfusion Damage and Activates Glucose Metabolism in Mouse Heart. Frontiers in Immunology, 2020, 11, 591815.	4.8	16
125	The Glucosylceramide Synthase Inhibitor <i>N</i> -(5-Adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin Induces Sterol Regulatory Element-Binding Protein-Regulated Gene Expression and Cholesterol Synthesis in HepG2 Cells. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 849-855.	2.5	15
126	The impact of altered carnitine availability on acylcarnitine metabolism, energy expenditure and glucose tolerance in diet-induced obese mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1375-1382.	3.8	15

#	Article	IF	Citations
127	Acute detachment of hexokinase II from mitochondria modestly increases oxygen consumption of the intact mouse heart. Metabolism: Clinical and Experimental, 2017, 72, 66-74.	3.4	15
128	Germline deletion of Krüppel-like factor 14 does not increase risk of diet induced metabolic syndrome in male C57BL/6 mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 3277-3285.	3.8	15
129	Murine deficiency of peroxisomal l-bifunctional protein (EHHADH) causes medium-chain 3-hydroxydicarboxylic aciduria and perturbs hepatic cholesterol homeostasis. Cellular and Molecular Life Sciences, 2021, 78, 5631-5646.	5.4	15
130	Mild inborn errors of metabolism in commonly used inbred mouse strains. Molecular Genetics and Metabolism, 2019, 126, 388-396.	1.1	14
131	Saccharopine, a lysine degradation intermediate, is a mitochondrial toxin. Journal of Cell Biology, 2019, 218, 391-392.	5. 2	14
132	Inhibition and Crystal Structure of the Human DHTKD1-Thiamin Diphosphate Complex. ACS Chemical Biology, 2020, 15, 2041-2047.	3.4	14
133	<i>Slc22a5</i> haploinsufficiency does not aggravate the phenotype of the longâ€chain acyl oA dehydrogenase KO mouse. Journal of Inherited Metabolic Disease, 2020, 43, 486-495.	3.6	13
134	Homing in on bile acid physiology. Cell Metabolism, 2006, 4, 423-424.	16.2	12
135	Liver disease predominates in a mouse model for mild human Zellweger spectrum disorder. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2774-2787.	3.8	12
136	The peroxisomal transporter <scp>ABCD3</scp> plays a major role in hepatic dicarboxylic fatty acid metabolism and lipid homeostasis. Journal of Inherited Metabolic Disease, 2021, 44, 1419-1433.	3.6	12
137	Food withdrawal lowers energy expenditure and induces inactivity in longâ€chain fatty acid oxidation–deficient mouse models. FASEB Journal, 2014, 28, 2891-2900.	0.5	10
138	Carnitine supplementation in high-fat diet-fed rats does not ameliorate lipid-induced skeletal muscle mitochondrial dysfunction in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E670-E678.	3.5	10
139	Toward an Understanding of the Structural and Mechanistic Aspects of Protein-Protein Interactions in 2-Oxoacid Dehydrogenase Complexes. Life, 2021, 11, 407.	2.4	10
140	Peroxisomal L-bifunctional Protein Deficiency Causes Male-specific Kidney Hypertrophy and Proximal Tubular Injury in Mice. Kidney360, 2021, 2, 1441-1454.	2.1	10
141	Identification and characterization of Eci3, a murine kidneyâ€specific Δ ³ , Δ ² â€enoylâ€CoA isomerase. FASEB Journal, 2014, 28, 1365-1374.	0.5	9
142	A mitochondrial long-chain fatty acid oxidation defect leads to transfer RNA uncharging and activation of the integrated stress response in the mouse heart. Cardiovascular Research, 2022, 118, 3198-3210.	3.8	9
143	In vivo proton <scp>T</scp> ₁ relaxation times of mouse myocardial metabolites at 9.4 <scp>T</scp> . Magnetic Resonance in Medicine, 2015, 73, 2069-2074.	3.0	7
144	Cholesterol-Induced Hepatic Inflammation Does Not Underlie the Predisposition to Insulin Resistance in Dyslipidemic Female LDL Receptor Knockout Mice. Journal of Diabetes Research, 2015, 2015, 1-12.	2.3	7

#	Article	IF	Citations
145	Structure–function analyses of the G729R 2-oxoadipate dehydrogenase genetic variant associated with a disorder of l-lysine metabolism. Journal of Biological Chemistry, 2020, 295, 8078-8095.	3.4	7
146	A liver revival featuring bile acids. Journal of Hepatology, 2007, 46, 539-540.	3.7	6
147	Treatment of genetically obese mice with the iminosugar N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin reduces body weight by decreasing food intake and increasing fat oxidation. Metabolism: Clinical and Experimental, 2012, 61, 99-107.	3.4	4
148	Glutaric aciduria type 3 is a naturally occurring biochemical trait in inbred mice of 129 substrains. Molecular Genetics and Metabolism, 2021, 132, 139-145.	1.1	4
149	Peroxisome Deficiency Does Not Result in Deficiency of Enzymes involved in Cholesterol Biosynthesis. Advances in Experimental Medicine and Biology, 2003, 544, 329-330.	1.6	4
150	Leveraging health systems data to characterize a large effect variant conferring risk for liver disease in Puerto Ricans. American Journal of Human Genetics, 2021, 108, 2099-2111.	6.2	4
151	News and views. Journal of Inherited Metabolic Disease, 2017, 40, 755-756.	3.6	3
152	Specific SIRT1 Activation Mimics Low Energy Levels and Protects against Diet-Induced Metabolic Disorders by Enhancing Fat Oxidation. Cell Metabolism, 2009, 9, 210.	16.2	2
153	New Driver for Lipid Synthesis. Cell, 2011, 147, 719-721.	28.9	1
154	Characterization of drug-induced splicing complexity in prostate cancer cell line using long read technology. , $2018, , .$		1
155	A novel and rapid long-chain hydroxyacyl-CoA dehydrogenase assay. Tijdschrift Voor Kindergeneeskunde, 2013, 81, 26-26.	0.0	0
156	Dietary restriction in the long-chain acyl-CoA dehydrogenase knockout mouse. Molecular Genetics and Metabolism Reports, 2021, 27, 100749.	1.1	0
157	Increased capacity to oxidize fatty acids does not prevent development of hepatic steatosis in highâ€fat diet fed rats. FASEB Journal, 2010, 24, .	0.5	0