Caixia Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5347541/publications.pdf Version: 2024-02-01

Ολιγία Χιι

#	Article	IF	CITATIONS
1	Electrochemically Exfoliated Chlorineâ€Doped Graphene for Flexible Allâ€Solidâ€State Microâ€Supercapacitors with High Volumetric Energy Density. Advanced Materials, 2022, 34, e2106309.	21.0	33
2	Synergistic coupling of NiFeZn-OH nanosheet network arrays on a hierarchical porous NiZn/Ni heterostructure for highly efficient water splitting. Science China Materials, 2022, 65, 1207-1216.	6.3	16
3	Ag Nanoparticles Anchored on Nanoporous Ge Skeleton as <scp>Highâ€Performance</scp> Anode for Lithiumâ€ion Batteries. Chinese Journal of Chemistry, 2021, 39, 2881-2888.	4.9	9
4	Free-standing trimodal porous NiZn intermetallic and Ni heterojunction as highly efficient hydrogen evolution electrocatalyst in the alkaline electrolyte. Nano Energy, 2021, 89, 106402.	16.0	48
5	TiO2 particles wrapped onto macroporous germanium skeleton as high performance anode for lithium-ion batteries. Chemical Engineering Journal, 2020, 381, 122649.	12.7	46
6	Support-free 3D hierarchical nanoporous Cu@Cu2O for fast tandem ammonia borane dehydrogenation and nitroarenes hydrogenation under mild conditions. Journal of Alloys and Compounds, 2020, 815, 152372.	5.5	25
7	Nitrogen-doped carbon encapsulated hollow ZnSe/CoSe ₂ nanospheres as high performance anodes for lithium-ion batteries. Nanoscale, 2020, 12, 22778-22786.	5.6	36
8	Conductive Ni supported NiCoO2–NiCoP nanosheets as highly active electrocatalyst toward hydrogen evolution reaction in alkaline media. Journal of Alloys and Compounds, 2020, 848, 156603.	5.5	6
9	One-step mild fabrication of branch-like multimodal porous Si/Zn composites as high performance anodes for Li-ion batteries. Solid State Ionics, 2020, 354, 115406.	2.7	11
10	Porous PtAg nanoshells/reduced graphene oxide based biosensors for low-potential detection of NADH. Mikrochimica Acta, 2020, 187, 544.	5.0	7
11	Self-supporting Co0.85Se nanosheets anchored on Co plate as highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Nano Research, 2020, 13, 2950-2957.	10.4	20
12	Nanoporous platinum-copper flowers for non-enzymatic sensitive detection of hydrogen peroxide and glucose at near-neutral pH values. Mikrochimica Acta, 2019, 186, 631.	5.0	35
13	A three-dimensional multilevel nanoporous NiCoO ₂ /Ni hybrid for highly reversible electrochemical energy storage. Journal of Materials Chemistry A, 2019, 7, 16222-16230.	10.3	77
14	Graphene quantum dots modified nanoporous SiAl composite as an advanced anode for lithium storage. Electrochimica Acta, 2019, 318, 228-235.	5.2	33
15	Hierarchical mulberry-like Fe3S4/Co9S8 nanoparticles as highly reversible anode for lithium-ion batteries. Electrochimica Acta, 2019, 304, 405-414.	5.2	38
16	Double conductivity-improved porous Sn/Sn4P3@carbon nanocomposite as high performance anode in Lithium-ion batteries. Journal of Colloid and Interface Science, 2019, 537, 588-596.	9.4	36
17	Easy preparation of nanoporous Ge/Cu3Ge composite and its high performances towards lithium storage. Journal of Colloid and Interface Science, 2019, 539, 665-671.	9.4	19
18	Carbon particles modified macroporous Si/Ni composite as an advanced anode material for lithium ion batteries. International Journal of Hydrogen Energy, 2019, 44, 1078-1087.	7.1	22

#	Article	IF	CITATIONS
19	One-step mild fabrication of porous core-shelled Si@TiO2 nanocomposite as high performance anode for Li-ion batteries. Journal of Colloid and Interface Science, 2019, 536, 171-179.	9.4	26
20	Tin sulphide nanoflowers anchored on three-dimensional porous graphene networks as high-performance anode for sodium-ion batteries. Journal of Colloid and Interface Science, 2018, 516, 1-8.	9.4	23
21	Highly sensitive microfluidic paper-based photoelectrochemical sensing platform based on reversible photo-oxidation products and morphology-preferable multi-plate ZnO nanoflowers. Biosensors and Bioelectronics, 2018, 110, 58-64.	10.1	43
22	An ultrasensitive biosensor for superoxide anion based on hollow porous PtAg nanospheres. Biosensors and Bioelectronics, 2018, 117, 429-435.	10.1	32
23	Nanoporous PdCu alloy as an excellent electrochemical sensor for H2O2 and glucose detection. Journal of Colloid and Interface Science, 2017, 491, 321-328.	9.4	58
24	Facile preparation of nanoporous TiO2/MoOx composite and its high lithium storage performances as an anode material. International Journal of Hydrogen Energy, 2017, 42, 6820-6828.	7.1	15
25	Facile fabrication of Fe3O4 octahedra/nanoporous copper network composite for high-performance anode in Li-Ion batteries. Journal of Colloid and Interface Science, 2017, 493, 171-180.	9.4	25
26	Stratified nanoporous PtTi alloys for hydrolysis of ammonia borane. Journal of Colloid and Interface Science, 2017, 496, 235-242.	9.4	32
27	Facile fabrication of graphene-encapsulated Mn3O4 octahedra cross-linked with a silver network as a high-capacity anode material for lithium ion batteries. New Journal of Chemistry, 2017, 41, 13454-13461.	2.8	11
28	Nanoporous PtCo/Co3O4 composites with high catalytic activities toward hydrolytic dehydrogenation of ammonia borane. Journal of Colloid and Interface Science, 2017, 508, 542-550.	9.4	25
29	Nanoporous PtRu Alloys with Unique Catalytic Activity toward Hydrolytic Dehydrogenation of Ammonia Borane. Chemistry - an Asian Journal, 2016, 11, 705-712.	3.3	22
30	Facile Preparation of Nanoporous PtCu Alloys for Preferential Oxidation of CO in Hydrogen-Rich System. Journal of Nanoscience and Nanotechnology, 2016, 16, 12628-12634.	0.9	0
31	Nanoporous PdZr surface alloy as highly active non–platinum electrocatalyst toward oxygen reduction reaction with unique structure stability and methanol–tolerance. Journal of Power Sources, 2016, 316, 106-113.	7.8	17
32	A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosensors and Bioelectronics, 2016, 82, 119-126.	10.1	242
33	Nanoporous Ru as highly efficient catalyst for hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2016, 41, 12714-12721.	7.1	45
34	Nanoporous TiO2/Co3O4 Composite as an Anode Material for Lithium-Ion Batteries. Electrochimica Acta, 2016, 211, 83-91.	5.2	35
35	Facile fabrication of a nanoporous Si/Cu composite and its application as a high-performance anode in lithium-ion batteries. Nano Research, 2016, 9, 908-916.	10.4	75
36	A sensitive electrochemical immunosensor for the detection of human chorionic gonadotropin based on a hierarchical nanoporous AuAg alloy. RSC Advances, 2016, 6, 87-93.	3.6	13

#	Article	lF	CITATIONS
37	Nanoporous PdCr alloys as highly active electrocatalysts for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2016, 18, 4166-4173.	2.8	25
38	A nanoporous palladium-nickel alloy with high sensing performance towards hydrogen peroxide and glucose. Journal of Colloid and Interface Science, 2015, 447, 50-57.	9.4	46
39	Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries. Nanoscale, 2015, 7, 5320-5327.	5.6	82
40	Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Mikrochimica Acta, 2015, 182, 1345-1352.	5.0	50
41	Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction. Journal of Power Sources, 2015, 280, 483-490.	7.8	65
42	A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite. Mikrochimica Acta, 2015, 182, 1055-1061.	5.0	37
43	Composited Co ₃ O ₄ /Ag with flower-like nanosheets anchored on a porous substrate as a high-performance anode for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 15944-15950.	10.3	63
44	Porous Co ₃ O ₄ /CuO Composite Assembled from Nanosheets as Highâ€Performance Anodes for Lithiumâ€Ion Batteries. ChemSusChem, 2015, 8, 1435-1441.	6.8	46
45	Low-temperature CO oxidation over unsupported nanoporous gold catalysts with active or inert oxide residues. Journal of Catalysis, 2015, 332, 31-37.	6.2	28
46	A Hierarchical Nanoporous PtCu Alloy as an Oxygenâ€Reduction Reaction Electrocatalyst with High Activity and Durability. ChemPlusChem, 2014, 79, 107-113.	2.8	19
47	Nonenzymatic immunosensor for detection of carbohydrate antigen 15-3 based on hierarchical nanoporous PtFe alloy. Biosensors and Bioelectronics, 2014, 56, 295-299.	10.1	41
48	Nanoporous PdPt alloy as a highly active electrocatalyst for formic acid oxidation. Journal of Materials Chemistry A, 2014, 2, 8875.	10.3	70
49	A highly sensitive sensor for the detection of nitrite based on a nanoporous Fe ₂ O ₃ –CoO composite. Analytical Methods, 2014, 6, 3147-3151.	2.7	20
50	Facile preparation of Mn ₃ O ₄ octahedra and their long-term cycle life as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 87-93.	10.3	123
51	Facile Fabrication of a Three-Dimensional Cross-Linking TiO ₂ Nanowire Network and Its Long-Term Cycling Life for Lithium Storage. ACS Applied Materials & Interfaces, 2014, 6, 10107-10112.	8.0	31
52	Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Analytica Chimica Acta, 2014, 832, 34-43.	5.4	75
53	Nanoporous PdNi alloys as highly active and methanol-tolerant electrocatalysts towards oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 13542.	10.3	101
54	A Nanoporous PdCo Alloy as a Highly Active Electrocatalyst for the Oxygenâ€Reduction Reaction and Formic Acid Electrooxidation. Chemistry - an Asian Journal, 2013, 8, 2721-2728.	3.3	31

#	Article	IF	CITATIONS
55	Phosphatidylserine enhances osteogenic differentiation in human mesenchymal stem cells via ERK signal pathways. Materials Science and Engineering C, 2013, 33, 1783-1788.	7.3	22
56	Controllable preparation of Co3O4 nanosheets and their electrochemical performance for Li-ion batteries. RSC Advances, 2013, 3, 7850.	3.6	37
57	Nanoporous platinum–cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. Analytica Chimica Acta, 2013, 780, 20-27.	5.4	73
58	Adaptability of sweetpotato whitefly <i>Bemisia tabaci</i> (Hemiptera: Aleyrodidae) on seven marginal host plants. International Journal of Pest Management, 2012, 58, 297-301.	1.8	7
59	Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy and Environmental Science, 2012, 5, 5281-5286.	30.8	161
60	Hierarchical Nanoporous PtFe Alloy with Multimodal Size Distributions and Its Catalytic Performance toward Methanol Electrooxidation. Langmuir, 2012, 28, 1886-1892.	3.5	96
61	Fabrication of nanoporous Cu–Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis. ACS Applied Materials & Interfaces, 2011, 3, 4626-4632.	8.0	107
62	Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing. Biosensors and Bioelectronics, 2011, 27, 160-166.	10.1	125
63	An Inâ€Situ Dealloying and Oxidation Route to Co ₃ O ₄ Nanosheets and their Ambientâ€Temperature CO Oxidation Activity. ChemCatChem, 2011, 3, 399-407.	3.7	38
64	Nanoporous PtRu Alloy Enhanced Nonenzymatic Immunosensor for Ultrasensitive Detection of Microcystin‣R. Advanced Functional Materials, 2011, 21, 4193-4198.	14.9	103
65	Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials, 2011, 32, 1051-1058.	11.4	184
66	Dealloying to Nanoporous Silver and Its Implementation as a Template Material for Construction of Nanotubular Mesoporous Bimetallic Nanostructures. ChemPhysChem, 2010, 11, 3320-3328.	2.1	73
67	A novel biomimetic composite scaffold hybridized with mesenchymal stem cells in repair of rat bone defects models. Journal of Biomedical Materials Research - Part A, 2010, 95A, 495-503.	4.0	30
68	Nanoporous PtRu Alloys for Electrocatalysis. Langmuir, 2010, 26, 7437-7443.	3.5	125
69	Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Physical Chemistry Chemical Physics, 2010, 12, 239-246.	2.8	200
70	A general corrosion route to nanostructured metal oxides. Nanoscale, 2010, 2, 906.	5.6	108
71	Microtensile tests of mechanical properties of nanoporous Au thin films. Journal of Materials Science, 2009, 44, 4728-4733.	3.7	35
72	Template-free Synthesis of Single-Crystalline-like CeO ₂ Hollow Nanocubes. Crystal Growth and Design, 2008, 8, 4449-4453.	3.0	105

#	Article	IF	CITATIONS
73	Nanoporous Metals by Dealloying Multicomponent Metallic Glasses. Chemistry of Materials, 2008, 20, 4548-4550.	6.7	272
74	Adsorption of Laccase on the Surface of Nanoporous Gold and the Direct Electron Transfer between Them. Journal of Physical Chemistry C, 2008, 112, 14781-14785.	3.1	133
75	Aerobic Oxidation of <scp>d</scp> -Glucose on Support-Free Nanoporous Gold. Journal of Physical Chemistry C, 2008, 112, 9673-9678.	3.1	159
76	Low Temperature CO Oxidation over Unsupported Nanoporous Gold. Journal of the American Chemical Society, 2007, 129, 42-43.	13.7	586