List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5347486/publications.pdf Version: 2024-02-01

		17440	29154
340	15,619	63	104
papers	citations	h-index	g-index
343	343	343	9013
all docs	docs citations	times ranked	citing authors

KE YANG

#	Article	IF	CITATIONS
1	In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. Journal of Biomedical Materials Research - Part A, 2007, 83A, 703-711.	4.0	462
2	In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials, 2009, 30, 1512-1523.	11.4	454
3	Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Materials Science and Engineering C, 2009, 29, 987-993.	7.3	399
4	Biodegradable Materials for Bone Repairs: A Review. Journal of Materials Science and Technology, 2013, 29, 503-513.	10.7	324
5	A new antibacterial titanium–copper sintered alloy: Preparation and antibacterial property. Materials Science and Engineering C, 2013, 33, 4280-4287.	7.3	247
6	Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials, 2016, 81, 84-92.	11.4	245
7	Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Materials Science and Engineering C, 2014, 35, 392-400.	7.3	229
8	<i>In vivo</i> evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. Journal of Biomedical Materials Research - Part A, 2009, 90A, 882-893.	4.0	226
9	Mechanical properties of magnesium alloys for medical application: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 68-79.	3.1	197
10	Nickel-free austenitic stainless steels for medical applications. Science and Technology of Advanced Materials, 2010, 11, 014105.	6.1	195
11	Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: InÂvitro and inÂvivo evaluations. Biomaterials, 2016, 106, 250-263.	11.4	194
12	The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 335, 14-20.	5.6	189
13	The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating. Acta Biomaterialia, 2013, 9, 8631-8642.	8.3	187
14	Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy. Materials Science and Engineering C, 2010, 30, 740-748.	7.3	182
15	The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling. Biomaterials, 2014, 35, 6299-6310.	11.4	171
16	Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Scientific Reports, 2016, 6, 29985.	3.3	165
17	In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel. Acta Materialia, 2006, 54, 435-443.	7.9	158
18	Surface Modification on Biodegradable Magnesium Alloys as Orthopedic Implant Materials to Improve the Bio-adaptability: A Review. Journal of Materials Science and Technology, 2016, 32, 827-834.	10.7	151

#	Article	IF	CITATIONS
19	The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels. Electrochimica Acta, 2010, 55, 5028-5035.	5.2	150
20	Antibacterial Properties of Ti–6Al–4V–xCu Alloys. Journal of Materials Science and Technology, 2014, 30, 699-705.	10.7	145
21	Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Scientific Reports, 2016, 6, 27374.	3.3	144
22	Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 488, 102-111.	5.6	142
23	Toward a Molecular Understanding of the Antibacterial Mechanism of Copperâ€Bearing Titanium Alloys against <i>Staphylococcus aureus</i> . Advanced Healthcare Materials, 2016, 5, 557-566.	7.6	140
24	Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 2017, 113, 1-8.	4.6	138
25	In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Dental Materials, 2018, 34, 1112-1126.	3.5	133
26	Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. Journal of Materials Science: Materials in Medicine, 2008, 19, 3057-3062.	3.6	127
27	Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel. Acta Materialia, 2019, 179, 296-307.	7.9	120
28	Study of high strength pipeline steels with different microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 502, 38-44.	5.6	116
29	lon channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: In vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomaterialia, 2017, 63, 369-382.	8.3	115
30	Effect of Heat Treatment on Cu Distribution, Antibacterial Performance and Cytotoxicity of Ti–6Al–4V–5Cu Alloy. Journal of Materials Science and Technology, 2015, 31, 723-732.	10.7	112
31	Effect of surface coating on antibacterial behavior of magnesium based metals. Materials Letters, 2011, 65, 3509-3511.	2.6	111
32	Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa. Corrosion Science, 2016, 111, 811-821.	6.6	110
33	Acicular ferritic microstructure of a low-carbon Mn–Mo–Nb microalloyed pipeline steel. Materials Characterization, 2005, 54, 305-314.	4.4	107
34	Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo. Journal of Materials Science: Materials in Medicine, 2011, 22, 2525-2535.	3.6	107
35	Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel. Materials & Design, 2011, 32, 2374-2379.	5.1	107
36	Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel. Materials Science and Engineering C, 2017, 71, 1079-1085.	7.3	107

#	Article	IF	CITATIONS
37	Preliminary study of anti-infective function of a copper-bearing stainless steel. Materials Science and Engineering C, 2012, 32, 1204-1209.	7.3	105
38	Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria. Corrosion Science, 2018, 132, 46-55.	6.6	102
39	Phosphating treatment and corrosion properties of Mg–Mn–Zn alloy for biomedical application. Journal of Materials Science: Materials in Medicine, 2009, 20, 859-867.	3.6	98
40	Microstructural stability of 9–12%Cr ferrite/martensite heat-resistant steels. Frontiers of Materials Science, 2013, 7, 1-27.	2.2	98
41	Antibacterial Properties of Magnesium <i>In Vitro</i> and in an <i>In Vivo</i> Model of Implant-Associated Methicillin-Resistant Staphylococcus aureus Infection. Antimicrobial Agents and Chemotherapy, 2014, 58, 7586-7591.	3.2	95
42	Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioactive Materials, 2020, 5, 680-693.	15.6	91
43	Comparison on strength and toughness behaviors of microalloyed pipeline steels with acicular ferrite and ultrafine ferrite. Materials Letters, 2003, 57, 1496-1500.	2.6	90
44	Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms. Journal of Materials Science and Technology, 2018, 34, 1325-1336.	10.7	90
45	Biological applications of copper-containing materials. Bioactive Materials, 2021, 6, 916-927.	15.6	90
46	Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine <i>Pseudomonas aeruginosa</i> biofilm. Biofouling, 2015, 31, 481-492.	2.2	89
47	Optimization of mechanical property, antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant. Journal of Materials Science and Technology, 2019, 35, 2336-2344.	10.7	87
48	Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 243-252.	5.6	85
49	Loss of mechanical properties in vivo and bone–implant interface strength of AZ31B magnesium alloy screws with Si-containing coating. Acta Biomaterialia, 2014, 10, 2333-2340.	8.3	84
50	Effect of preparation parameters on the properties of hydroxyapatite containing micro-arc oxidation coating on biodegradable ZK60 magnesium alloy. Ceramics International, 2014, 40, 10043-10051.	4.8	84
51	Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Materials Science and Engineering C, 2015, 48, 228-234.	7.3	81
52	Fluoride Conversion Coating on Biodegradable AZ31B Magnesium Alloy. Journal of Materials Science and Technology, 2014, 30, 666-674.	10.7	80
53	Relation among rolling parameters, microstructures and mechanical properties in an acicular ferrite pipeline steel. Materials & Design, 2009, 30, 3436-3443.	5.1	78
54	In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2017, 149, 330-340.	5.0	77

#	Article	IF	CITATIONS
55	Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy. Journal of Materials Science and Technology, 2019, 35, 777-783.	10.7	77
56	Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1733-1740.	3.5	76
57	Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys. Journal of Materials Science and Technology, 2019, 35, 503-511.	10.7	71
58	Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater. International Biodeterioration and Biodegradation, 2016, 110, 199-205.	3.9	70
59	Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel. Materials and Design, 2015, 87, 303-312.	7.0	69
60	In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis. Journal of Materials Science: Materials in Medicine, 2012, 23, 1235-1245.	3.6	68
61	Microbiologically influenced corrosion of titanium caused by aerobic marine bacterium Pseudomonas aeruginosa. Journal of Materials Science and Technology, 2019, 35, 216-222.	10.7	68
62	Effect of heat treatment on mechanical and biodegradable properties of an extruded ZK60 alloy. Bioactive Materials, 2017, 2, 19-26.	15.6	67
63	Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600 °C. Journal of Nuclear Materials, 2015, 457, 135-141.	2.7	65
64	Osteogenic ability of Cuâ€bearing stainless steel. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1433-1444.	3.4	65
65	Investigation on the H2S-resistant behaviors of acicular ferrite and ultrafine ferrite. Materials Letters, 2002, 57, 141-145.	2.6	64
66	The antibacterial properties and biocompatibility of a Ti–Cu sintered alloy for biomedical application. Biomedical Materials (Bristol), 2014, 9, 025013.	3.3	64
67	Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition. Materials Science and Engineering C, 2014, 36, 65-76.	7.3	64
68	The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model. Materials Science and Engineering C, 2016, 63, 506-511.	7.3	64
69	Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel. Corrosion Science, 2016, 113, 46-56.	6.6	64
70	Fabrication and Evaluation of a Bioactive Sr–Ca–P Contained Micro-Arc Oxidation Coating on Magnesium Strontium Alloy for Bone Repair Application. Journal of Materials Science and Technology, 2016, 32, 233-244.	10.7	64
71	Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper. Corrosion Science, 2019, 156, 125-138.	6.6	64
72	Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel. Colloids and Surfaces B: Biointerfaces, 2013, 105, 51-57.	5.0	63

#	Article	IF	CITATIONS
73	In vitro degradation and antibacterial property of a copper-containing micro-arc oxidation coating on Mg-2Zn-1Gd-0.5Zr alloy. Colloids and Surfaces B: Biointerfaces, 2019, 179, 77-86.	5.0	63
74	Research on super-hydrophobic surface of biodegradable magnesium alloys used for vascular stents. Materials Science and Engineering C, 2013, 33, 2885-2890.	7.3	62
75	Study on improved tribological properties by alloying copper to CP-Ti and Ti–6Al–4V alloy. Materials Science and Engineering C, 2015, 57, 123-132.	7.3	62
76	Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel. Applied Surface Science, 2016, 386, 371-380.	6.1	62
77	Strengthening and toughening of a 2800-MPa grade maraging steel. Materials Letters, 2002, 56, 763-769.	2.6	61
78	Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 586, 253-258.	5.6	61
79	Novel Cu-bearing high-strength pipeline steels with excellent resistance to hydrogen-induced cracking. Materials and Design, 2016, 92, 300-305.	7.0	61
80	Contact Killing of Cu-Bearing Stainless Steel Based on Charge Transfer Caused by the Microdomain Potential Difference. ACS Applied Materials & Interfaces, 2020, 12, 361-372.	8.0	61
81	Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents. Acta Biomaterialia, 2013, 9, 8730-8739.	8.3	60
82	Corrosion and biological performance of biodegradable magnesium alloys mediated by low copper addition and processing. Materials Science and Engineering C, 2018, 93, 565-581.	7.3	60
83	Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 2019, 128, 193-203.	4.6	60
84	Mitigation of microbiologically influenced corrosion of 304L stainless steel in the presence of Pseudomonas aeruginosa by Cistus ladanifer leaves extract. International Biodeterioration and Biodegradation, 2018, 133, 159-169.	3.9	58
85	In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy. Applied Surface Science, 2014, 288, 718-726.	6.1	57
86	Strengthening and improvement of sulfide stress cracking resistance in acicular ferrite pipeline steels by nano-sized carbonitrides. Scripta Materialia, 2005, 52, 881-886.	5.2	56
87	Bio-functional Design for Metal Implants, a New Concept for Development of Metallic Biomaterials. Journal of Materials Science and Technology, 2013, 29, 1005-1010.	10.7	55
88	In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model. Materials Science and Engineering C, 2013, 33, 3881-3888.	7.3	55
89	Antibacterial Performance of a Cu-bearing Stainless Steel against Microorganisms in Tap Water. Journal of Materials Science and Technology, 2015, 31, 243-251.	10.7	54
90	Antibacterial effect of a copper-containing titanium alloy against implant-associated infection induced by methicillin-resistant Staphylococcus aureus. Acta Biomaterialia, 2021, 119, 472-484.	8.3	54

#	Article	IF	CITATIONS
91	Fabrication and evaluation of bioresorbable PLLA/magnesium and PLLA/magnesium fluoride hybrid composites for orthopedic implants. Composites Science and Technology, 2014, 98, 36-43.	7.8	52
92	Tailoring the degradation and biological response of a magnesium–strontium alloy for potential bone substitute application. Materials Science and Engineering C, 2016, 58, 799-811.	7.3	52
93	Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm. International Biodeterioration and Biodegradation, 2018, 132, 132-138.	3.9	52
94	Influence of Cold Work on Pitting Corrosion Behavior of a High Nitrogen Stainless Steel. Journal of the Electrochemical Society, 2008, 155, C455.	2.9	51
95	Cytotoxic Effect on Osteosarcoma MG-63 Cells by Degradation of Magnesium. Journal of Materials Science and Technology, 2014, 30, 888-893.	10.7	51
96	A new 1.9GPa maraging stainless steel strengthened by multiple precipitating species. Materials and Design, 2015, 82, 56-63.	7.0	51
97	Bio-Functional Cu Containing Biomaterials: a New Way to Enhance Bio-Adaption of Biomaterials. Journal of Materials Science and Technology, 2016, 32, 835-839.	10.7	51
98	Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance. Materials Science and Engineering C, 2016, 69, 744-750.	7.3	51
99	Cu Ions Dissolution from Cu-bearing Antibacterial Stainless Steel. Journal of Materials Science and Technology, 2010, 26, 941-944.	10.7	50
100	Effect of Cu Addition to 2205 Duplex Stainless Steel on the Resistance against Pitting Corrosion by the Pseudomonas aeruginosa Biofilm. Journal of Materials Science and Technology, 2017, 33, 723-727.	10.7	50
101	Effect of annealing temperature on mechanical and antibacterial properties of Cu-bearing titanium alloy and its preliminary study of antibacterial mechanism. Materials Science and Engineering C, 2018, 93, 495-504.	7.3	50
102	Silicon enhances high temperature oxidation resistance of SIMP steel at 700â€Â°C. Corrosion Science, 2020, 167, 108519.	6.6	49
103	Dynamic behaviors of a Ca–P coated AZ31B magnesium alloy during in vitro and in vivo degradations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1718-1726.	3.5	48
104	Role of microstructure on sulfide stress cracking of oil and gas pipeline steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 1089-1096.	2.2	47
105	<i>In vitro</i> and <i>in vivo</i> evaluations on osteogenesis and biodegradability of a βâ€tricalcium phosphate coated magnesium alloy. Journal of Biomedical Materials Research - Part A, 2012, 100A, 293-304.	4.0	47
106	Study on antibacterial performance of Cu-bearing cobalt-based alloy. Materials Letters, 2014, 129, 88-90.	2.6	47
107	Preclinical investigation of an innovative magnesium-based bone graft substitute forÂpotential orthopaedic applications. Journal of Orthopaedic Translation, 2014, 2, 139-148.	3.9	47
108	Study on fatigue property of a new 2.8GPa grade maraging steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3057-3063.	5.6	46

#	Article	IF	CITATIONS
109	Antibacterial TiCu/TiCuN Multilayer Films with Good Corrosion Resistance Deposited by Axial Magnetic Field-Enhanced Arc Ion Plating. ACS Applied Materials & Interfaces, 2019, 11, 125-136.	8.0	46
110	Effects of combined chemical design (Cu addition) and topographical modification (SLA) of Ti-Cu/SLA for promoting osteogenic, angiogenic and antibacterial activities. Journal of Materials Science and Technology, 2020, 47, 202-215.	10.7	46
111	Microbial corrosion resistance of a novel Cu-bearing pipeline steel. Journal of Materials Science and Technology, 2018, 34, 2480-2491.	10.7	45
112	In vitro study of platelet adhesion on medical nickel-free stainless steel surface. Materials Letters, 2005, 59, 1785-1789.	2.6	44
113	Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants. Applied Surface Science, 2013, 282, 186-194.	6.1	44
114	Cytocompatibility and Hemolysis of AZ31B Magnesium Alloy with Si-containing Coating. Journal of Materials Science and Technology, 2015, 31, 845-851.	10.7	44
115	In vitro study on an antibacterial Ti–5Cu alloy for medical application. Journal of Materials Science: Materials in Medicine, 2016, 27, 91.	3.6	44
116	Novel Bio-functional Magnesium Coating on Porous Ti6Al4V Orthopaedic Implants: In vitro and In vivo Study. Scientific Reports, 2017, 7, 40755.	3.3	44
117	Biofunctional Mg coating on PEEK for improving bioactivity. Bioactive Materials, 2018, 3, 139-143.	15.6	44
118	Microstructure Evolution of a 10Cr Heat-Resistant Steel during High Temperature Creep. Journal of Materials Science and Technology, 2011, 27, 344-351.	10.7	43
119	A self-healing stainless steel: Role of nitrogen in eliminating detrimental effect of cold working on pitting corrosion resistance. Corrosion Science, 2018, 145, 55-66.	6.6	43
120	Preparation and characterization of Ca-P coating on AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2010, 20, s648-s654.	4.2	41
121	CoCrWCu alloy with antibacterial activity fabricated by selective laser melting: Densification, mechanical properties and microstructural analysis. Powder Technology, 2018, 325, 289-300.	4.2	41
122	An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel. Scientific Reports, 2016, 6, 29244.	3.3	40
123	Biocompatibility and neurotoxicity of magnesium alloys potentially used for neural repairs. Materials Science and Engineering C, 2017, 78, 1155-1163.	7.3	40
124	Eliminating detrimental effect of cold working on pitting corrosion resistance in high nitrogen austenitic stainless steels. Corrosion Science, 2017, 123, 351-355.	6.6	40
125	Optimization of annealing treatment and comprehensive properties of Cu-containing Ti6Al4V-xCu alloys. Journal of Materials Science and Technology, 2019, 35, 2121-2131.	10.7	40
126	Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment. Materials Science and Engineering C, 2019, 100, 396-410.	7.3	40

#	Article	IF	CITATIONS
127	Effect of nitrogen on blood compatibility of nickel-free high nitrogen stainless steel for biomaterial. Materials Science and Engineering C, 2010, 30, 1183-1189.	7.3	39
128	Differential scanning calorimetry analysis on Cu precipitation in a high Cu austenitic stainless steel. Materials & Design, 2011, 32, 3980-3985.	5.1	39
129	Antimicrobial Cu-bearing stainless steel scaffolds. Materials Science and Engineering C, 2016, 68, 519-522.	7.3	39
130	Effect of Microstructure on Hydrogen Induced Cracking Behavior of a High Deformability Pipeline Steel. Journal of Iron and Steel Research International, 2015, 22, 937-942.	2.8	38
131	Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 590, 199-208.	5.6	37
132	Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity. Journal of Materials Science and Technology, 2020, 48, 130-139.	10.7	37
133	Novel biocompatible magnesium alloys design with nutrient alloying elements Si, Ca and Sr: Structure and properties characterization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 214, 26-36.	3.5	36
134	Study on microstructure and properties of extruded Mg–2Nd–0.2Zn alloy as potential biodegradable implant material. Materials Science and Engineering C, 2015, 49, 422-429.	7.3	35
135	In vitro study on cytocompatibility and osteogenesis ability of Ti–Cu alloy. Journal of Materials Science: Materials in Medicine, 2019, 30, 75.	3.6	35
136	Antibacterial Behavior of a Cu-bearing Type 200 Stainless Steel. Journal of Materials Science and Technology, 2012, 28, 1067-1070.	10.7	34
137	Bioactive Ca–P coating with self-sealing structure on pure magnesium. Journal of Materials Science: Materials in Medicine, 2013, 24, 889-901.	3.6	34
138	Finite element analyses for optimization design of biodegradable magnesium alloy stent. Materials Science and Engineering C, 2014, 42, 705-714.	7.3	34
139	Molecular and cellular mechanisms for zoledronic acid-loaded magnesium-strontium alloys to inhibit giant cell tumors of bone. Acta Biomaterialia, 2018, 77, 365-379.	8.3	34
140	Preliminary Study on Cytotoxic Effect of Biodegradation of Magnesium on Cancer Cells. Journal of Materials Science and Technology, 2012, 28, 769-772.	10.7	33
141	Antibacterial activity of copperâ€bearing 316L stainless steel for the prevention of implantâ€related infection. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 484-495.	3.4	33
142	Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans. Journal of Materials Science and Technology, 2021, 66, 112-120.	10.7	33
143	Effect of nitrogen on biocorrosion behavior of high nitrogen nickel-free stainless steel in different simulated body fluids. Materials Science and Engineering C, 2012, 32, 510-516.	7.3	32
144	Short-term effect of magnesium implantation on the osteomyelitis modeled animals induced by Staphylococcus aureus. Journal of Materials Science: Materials in Medicine, 2013, 24, 2405-2416.	3.6	32

#	Article	IF	CITATIONS
145	The effects of pulse electrodeposition parameters on morphology and formation of dual-layer Si-doped calcium phosphate coating on AZ31 alloy. Ceramics International, 2015, 41, 787-796.	4.8	32
146	Effect of copper content on the corrosion behaviors and antibacterial properties of binary Mg–Cu alloys. Materials Technology, 2018, 33, 145-152.	3.0	32
147	Influence of hybrid extrusion and solution treatment on the microstructure and degradation behavior of Mg-0.1Cu alloy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 229, 105-117.	3.5	32
148	Regulation of osteogenesis and osteoclastogenesis by zoledronic acid loaded on biodegradable magnesium-strontium alloy. Scientific Reports, 2019, 9, 933.	3.3	32
149	Characterization of micro-arc oxidation coating post-treated by hydrofluoric acid on biodegradable ZK60 magnesium alloy. Surface and Coatings Technology, 2013, 232, 899-905.	4.8	31
150	Analysis of deformation behavior and workability of advanced 9Cr–Nb–V ferritic heat resistant steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 604, 207-214.	5.6	31
151	Study on biodegradation of the second phase Mg17Al12 in Mg–Al–Zn Alloys: In vitro experiment and thermodynamic calculation. Materials Science and Engineering C, 2014, 35, 1-7.	7.3	31
152	A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties. Materials Science and Engineering C, 2016, 67, 461-467.	7.3	31
153	Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti. Journal of Materials Science and Technology, 2019, 35, 2494-2502.	10.7	31
154	High nitrogen nickel-free austenitic stainless steel: A promising coronary stent material. Science China Technological Sciences, 2012, 55, 329-340.	4.0	30
155	Influence of thermal aging on microstructure and mechanical properties of CLAM steel. Journal of Nuclear Materials, 2013, 443, 479-483.	2.7	30
156	Dissolution and repair of passive film on Cu-bearing 304L stainless steels immersed in H2SO4 solution. Journal of Materials Science and Technology, 2018, 34, 2149-2159.	10.7	30
157	Preliminary study of microstructure, mechanical properties and corrosion resistance of antibacterial Ti-15Zr-xCu alloy for dental application. Journal of Materials Science and Technology, 2020, 50, 31-43.	10.7	30
158	The effect of different coatings on bone response and degradation behavior of porous magnesium-strontium devices in segmental defect regeneration. Bioactive Materials, 2021, 6, 1765-1776.	15.6	30
159	Molecular mechanisms of osteogenesis and antibacterial activity of Cu-bearing Ti alloy in a bone defect model with infection in vivo. Journal of Orthopaedic Translation, 2021, 27, 77-89.	3.9	30
160	Study on Laves phase in an advanced heat-resistant steel. Frontiers of Materials Science in China, 2009, 3, 434-441.	0.5	29
161	Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus. Materials Science and Engineering C, 2015, 51, 356-361.	7.3	29
162	Antibacterial Performance of Cu-Bearing Stainless Steel against Staphylococcus aureus and Pseudomonas aeruginosa in Whole Milk. Journal of Materials Science and Technology, 2016, 32, 445-451.	10.7	29

#	Article	IF	CITATIONS
163	Anti-infection mechanism of a novel dental implant made of titanium-copper (TiCu) alloy and its mechanism associated with oral microbiology. Bioactive Materials, 2022, 8, 381-395.	15.6	29
164	Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81, 130-141.	3.1	28
165	Ce addition enhances the microbially induced corrosion resistance of Cu-bearing 2205 duplex stainless steel in presence of sulfate reducing bacteria. Corrosion Science, 2021, 179, 109141.	6.6	28
166	Relationship between Laves phase and the impact brittleness of P92 steel reevaluated. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 252-258.	5.6	27
167	Surface characterization and preparation of Ta coating on Ti6Al4V alloy. Journal of Alloys and Compounds, 2015, 644, 698-703.	5.5	27
168	Effect of cold deformation on corrosion fatigue behavior of nickel-free high nitrogen austenitic stainless steel for coronary stent application. Journal of Materials Science and Technology, 2018, 34, 660-665.	10.7	27
169	Microstructure, mechanical and biodegradable properties of a Mg–2Zn–1Gd–0.5Zr alloy with different solution treatments. Rare Metals, 2019, 38, 532-542.	7.1	27
170	Evaluation of the osteo-inductive potential of hollow three-dimensional magnesium-strontium substitutes for the bone grafting application. Materials Science and Engineering C, 2017, 73, 347-356.	7.3	26
171	Role of Co in formation of Ni-Ti clusters in maraging stainless steel. Journal of Materials Science and Technology, 2018, 34, 1671-1675.	10.7	26
172	Comparative study of the effect of Nd and Y content on the mechanical and biodegradable properties of Mg-Zn-Zr-xNd/Y (x=0.5, 1, 2) alloys. Materials Technology, 2018, 33, 659-671.	3.0	26
173	Biodegradation Behavior of Coated As-Extruded Mg–Sr Alloy in Simulated Body Fluid. Acta Metallurgica Sinica (English Letters), 2019, 32, 1195-1206.	2.9	26
174	A New Maraging Stainless Steel with Excellent Strength–Toughness–Corrosion Synergy. Materials, 2017, 10, 1293.	2.9	25
175	Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process. International Journal of Nanomedicine, 2017, Volume 12, 8443-8457.	6.7	25
176	<i>In vitro</i> and <i>in vivo</i> studies on degradation and bone response of Mg-Sr alloy for treatment of bone defect. Materials Technology, 2018, 33, 387-397.	3.0	25
177	Osteogenesis stimulation by copper-containing 316L stainless steel via activation of akt cell signaling pathway and Runx2 upregulation. Journal of Materials Science and Technology, 2019, 35, 2727-2733.	10.7	25
178	Study on a biodegradable antibacterial Fe-Mn-C-Cu alloy as urinary implant material. Materials Science and Engineering C, 2019, 103, 109718.	7.3	25
179	An induced corrosion inhibition of X80 steel by using marine bacterium Marinobacter salsuginis. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110858.	5.0	25
180	Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1. Journal of Materials Science and Technology, 2021, 64, 176-186.	10.7	25

#	Article	IF	CITATIONS
181	Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats. Materials Science and Engineering C, 2013, 33, 4470-4474.	7.3	24
182	Preliminary study on a bioactive Sr containing Ca–P coating on pure magnesium by a two-step procedure. Surface and Coatings Technology, 2014, 252, 79-86.	4.8	24
183	HIC and SSC Behavior of High-Strength Pipeline Steels. Acta Metallurgica Sinica (English Letters), 2015, 28, 799-808.	2.9	24
184	Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy. Materials Science and Engineering C, 2016, 69, 95-107.	7.3	23
185	Surface degradation–enabled osseointegrative, angiogenic and antiinfective properties of magnesium-modified acrylic bone cement. Journal of Orthopaedic Translation, 2019, 17, 121-132.	3.9	23
186	New strategy to delay food spoilage: Application of new food contact material with antibacterial function. Journal of Materials Science and Technology, 2021, 70, 59-66.	10.7	23
187	Residual Ferrite and Relationship Between Composition and Microstructure in High-Nitrogen Austenitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5537-5545.	2.2	22
188	Three dimensional atom probe and first-principles studies on spinodal decomposition of Cr in a Co-alloyed maraging stainless steel. Scripta Materialia, 2016, 121, 37-41.	5.2	22
189	A novel ureteral stent material with antibacterial and reducing encrustation properties. Materials Science and Engineering C, 2016, 68, 221-228.	7.3	22
190	Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic. Journal of Nuclear Materials, 2016, 473, 189-196.	2.7	22
191	In vitro Study on a New High Nitrogen Nickel-free Austenitic Stainless Steel for Coronary Stents. Journal of Materials Science and Technology, 2011, 27, 325-331.	10.7	21
192	Synthesis and characterization of Ca–Sr–P coating on pure magnesium for biomedical application. Ceramics International, 2014, 40, 4559-4565.	4.8	21
193	Degradation and biological properties of Ca-P contained micro-arc oxidation self-sealing coating on pure magnesium for bone fixation. International Journal of Energy Production and Management, 2015, 2, 107-118.	3.7	21
194	Antibacterial Titanium Produced Using Selective Laser Melting. Jom, 2017, 69, 2719-2724.	1.9	21
195	Comparative study on effects of different coatings on biodegradable and wear properties of Mg-2Zn-1Gd-0.5Zr alloy. Surface and Coatings Technology, 2018, 352, 273-284.	4.8	21
196	Preliminary study of adsorption behavior of bovine serum albumin (BSA) protein and its effect on antibacterial and corrosion property of Ti-3Cu alloy. Journal of Materials Science and Technology, 2021, 80, 117-127.	10.7	21
197	Cytotoxic Effects of Biodegradation of Pure Mg and MAO-Mg on Tumor Cells of MG63 and KB. Journal of Materials Science and Technology, 2014, 30, 487-492.	10.7	20
198	High Temperature Oxidation Behavior of SIMP Steel. Oxidation of Metals, 2015, 83, 521-532.	2.1	20

#	Article	IF	CITATIONS
199	Biocompatibility and Cu ions release kinetics of copper-bearing titanium alloys. Journal of Materials Science and Technology, 2021, 95, 237-248.	10.7	20
200	Laves-phase in the China Low Activation Martensitic steel after long-term creep exposure. Materials & Design, 2014, 63, 333-335.	5.1	19
201	Research on the corrosion resistance and formation of double-layer calcium phosphate coating on AZ31 obtained at varied temperatures. Materials Science and Engineering C, 2014, 43, 264-271.	7.3	19
202	Investigation on mechanical, corrosion resistance and antibacterial properties of Cu-bearing 2205 duplex stainless steel by solution treatment. RSC Advances, 2016, 6, 112738-112747.	3.6	19
203	Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application. Materials Science and Engineering C, 2016, 60, 293-297.	7.3	19
204	Mg-based absorbable membrane for guided bone regeneration (GBR): a pilot study. Rare Metals, 2019, 38, 577-587.	7.1	19
205	Effects of microstructure on the torsional properties of biodegradable WE43 Mg alloy. Journal of Materials Science and Technology, 2020, 51, 102-110.	10.7	19
206	Study on mechanical behavior of Cu-bearing antibacterial titanium alloy implant. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104926.	3.1	19
207	Potential antiosteoporosis effect of biodegradable magnesium implanted in STZâ€induced diabetic rats. Journal of Biomedical Materials Research - Part A, 2011, 99A, 386-394.	4.0	18
208	Investigation of the inner corrosion layer formed in pulse electrodeposition coating on Mg-Sr alloy and corresponding degradation behavior. Journal of Colloid and Interface Science, 2016, 481, 1-12.	9.4	18
209	Effect of deformation on precipitation hardening behavior of a maraging steel in the aging process. Materials Characterization, 2019, 155, 109827.	4.4	18
210	Facile fabrication of the zoledronate-incorporated coating on magnesium alloy for orthopaedic implants. Journal of Orthopaedic Translation, 2020, 22, 2-6.	3.9	18
211	Optimising the torsional properties and corrosion resistance of biodegradable WE43 Mg alloy by ECAP and subsequent ageing. Materials Technology, 2020, 35, 402-410.	3.0	18
212	Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro. Journal of Materials Science and Technology, 2021, 62, 139-147.	10.7	18
213	Antibacterial mechanism of Cu-bearing 430 ferritic stainless steel. Rare Metals, 2022, 41, 559-569.	7.1	18
214	9-12Cr Heat-Resistant Steels. Engineering Materials, 2015, , .	0.6	17
215	Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition. Materials Science and Engineering C, 2016, 63, 37-45.	7.3	17
216	In vitro study on infectious ureteral encrustation resistance of Cu-bearing stainless steel. Journal of Materials Science and Technology, 2017, 33, 1604-1609.	10.7	17

#	Article	IF	CITATIONS
217	Effect of Cu Addition in Pipeline Steels on Microstructure, Mechanical Properties and Microbiologically Influenced Corrosion. Acta Metallurgica Sinica (English Letters), 2017, 30, 601-613.	2.9	17
218	A novel polymer critical re-melting treatment for improving corrosion resistance of magnesium alloy stent. Journal of Materials Science and Technology, 2019, 35, 19-22.	10.7	17
219	Interfacial segregation and precipitation behavior of Cu-rich precipitates in Cu-bearing 316LN stainless steel after aging at different temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140571.	5.6	17
220	One-step electrodeposition synthesis of bisphosphonate loaded magnesium implant: A strategy to modulate drug release for osteoporotic fracture healing. Journal of Materials Science and Technology, 2021, 78, 92-99.	10.7	17
221	Surface Roughness of Cu-Bearing Stainless Steel Affects Its Contact-Killing Efficiency by Mediating the Interfacial Interaction with Bacteria. ACS Applied Materials & Interfaces, 2021, 13, 2303-2315.	8.0	17
222	Effect of Cu on the passivity of Ti–xCu (x = 0, 3 and 5Âwt%) alloy in phosphate-buffered saline solution within the framework of PDM-II. Electrochimica Acta, 2021, 386, 138466.	5.2	17
223	Biodegradable magnesium pins enhanced the healing of transverse patellar fracture in rabbits. Bioactive Materials, 2021, 6, 4176-4185.	15.6	17
224	Enhancing mechanical property and corrosion resistance of Mg–Zn-Nd alloy wire by a combination of SPD techniques, extrusion and hot drawing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 829, 142058.	5.6	17
225	Fabrication and Characterization of Ca–Mg–P Containing Coating on Pure Magnesium. Journal of Materials Science and Technology, 2012, 28, 636-641.	10.7	16
226	Enoxacin-loaded Poly (lactic-co-glycolic acid) Coating on Porous Magnesium Scaffold as a Drug Delivery System: Antibacterial Properties and Inhibition of Osteoclastic Bone Resorption. Journal of Materials Science and Technology, 2016, 32, 865-873.	10.7	16
227	Corrosion Inhibition of X80 Steel in Simulated Marine Environment with Marinobacter aquaeolei. Acta Metallurgica Sinica (English Letters), 2019, 32, 1373-1384.	2.9	16
228	Nitrogen-containing bisphosphonate-loaded micro-arc oxidation coating for biodegradable magnesium alloy pellets inhibits osteosarcoma through targeting of the mevalonate pathway. Acta Biomaterialia, 2021, 121, 682-694.	8.3	16
229	Improvement of mechanical property and corrosion resistance of Mg-Zn-Nd alloy by bi-direction drawing. Journal of Materials Science and Technology, 2021, 81, 88-96.	10.7	16
230	Biodegradable Mg-based alloys: biological implications and restorative opportunities. International Materials Reviews, 2023, 68, 365-403.	19.3	16
231	Study of second phase in bioabsorbable magnesium alloys: Phase stability evaluation via Dmol3 calculation. APL Materials, 2013, 1, .	5.1	15
232	Reduction of In-Stent Restenosis Risk on Nickel-Free Stainless Steel by Regulating Cell Apoptosis and Cell Cycle. PLoS ONE, 2013, 8, e62193.	2.5	15
233	Examining Cu content contribution to changes in oxide layer formed on selective-laser-melted CoCrW alloys. Applied Surface Science, 2019, 464, 262-272.	6.1	15
234	Biodegradation behaviour of hydroxyapatite-containing self-sealing micro-arc-oxidation coating on pure Mg. Surface Engineering, 2021, 37, 942-952.	2.2	15

#	Article	IF	CITATIONS
235	On Laves phase in a 9Cr3W3CoB martensitic heat resistant steel when aged at high temperatures. Journal of Materials Science and Technology, 2021, 85, 129-140.	10.7	15
236	Constitutive Modeling, Microstructure Evolution, and Processing Map for a Nitride-Strengthened Heat-Resistant Steel. Journal of Materials Engineering and Performance, 2014, 23, 3042-3050.	2.5	14
237	A novel nano-copper-bearing stainless steel with reduced Cu2+ release only inducing transient foreign body reaction via affecting the activity of NF-κB and Caspase 3. International Journal of Nanomedicine, 2015, 10, 6725.	6.7	14
238	Ultra-high cycle fatigue behavior of a novel 1.9â€ ⁻ GPa grade super-high-strength maraging stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 755, 50-56.	5.6	14
239	Hot Deformation Behavior of a New Nuclear Use Reduced Activation Ferritic/Martensitic Steel. Acta Metallurgica Sinica (English Letters), 2019, 32, 825-834.	2.9	14
240	Study the existing form of copper (p-type oxide/segregation) and its release mechanism from the passive film of Ti-7Cu alloy. Corrosion Science, 2021, 190, 109693.	6.6	14
241	Effect of microstructure and crystallographic orientation characteristics on low temperature toughness and fracture behavior of pipeline steels. Journal of Materials Research and Technology, 2022, 17, 3172-3185.	5.8	14
242	Magnesium Alloy for Repair of Lateral Tibial Plateau Defect in Minipig Model. Journal of Materials Science and Technology, 2013, 29, 539-544.	10.7	13
243	In Vivo Study on Degradation Behavior and Histologic Response of Pure Magnesium in Muscles. Journal of Materials Science and Technology, 2017, 33, 469-474.	10.7	13
244	Evaluation of promoting effect of a novel Cu-bearing metal stent on endothelialization process from in vitro and in vivo studies. Scientific Reports, 2017, 7, 17394.	3.3	13
245	<i>In vitro</i> study of stimulation effect on endothelialization by a copper bearing cobalt alloy. Journal of Biomedical Materials Research - Part A, 2018, 106, 561-569.	4.0	13
246	In vitro insights into the role of copper ions released from selective laser melted CoCrW-xCu alloys in the potential attenuation of inflammation and osteoclastogenesis. Journal of Materials Science and Technology, 2020, 41, 56-67.	10.7	13
247	Anticancer Effect of Biodegradable Magnesium on Hepatobiliary Carcinoma: An <i>In Vitro</i> and <i>In Vivo</i> Study. ACS Biomaterials Science and Engineering, 2021, 7, 2774-2782.	5.2	13
248	Lead–Bismuth Eutectic Corrosion Behaviors of Ferritic/Martensitic Steels in Low Oxygen Concentration Environment. Oxidation of Metals, 2015, 84, 383-395.	2.1	12
249	Thein vitrobiocompatibility and macrophage phagocytosis of Mg17Al12phase in Mg-Al-Zn alloys. Journal of Biomedical Materials Research - Part A, 2015, 103, 2405-2415.	4.0	12
250	Oxidation and tensile behavior of ferritic/martensitic steels after exposure to lead-bismuth eutectic. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 97-105.	5.6	12
251	Enhancing Pitting Corrosion Resistance of Severely Cold-Worked High Nitrogen Austenitic Stainless Steel by Nitric Acid Passivation. Journal of the Electrochemical Society, 2019, 166, C365-C374.	2.9	12
252	In vitro and in vivo characterization of novel calcium phosphate and magnesium (CaP-Mg) bilayer coated titanium for implantation. Surface and Coatings Technology, 2019, 374, 784-796.	4.8	12

#	Article	IF	CITATIONS
253	Effects of solution treatment on mechanical properties and degradation of Mg-2Zn-0.5Nd-0.5Zr alloy. Materials Technology, 2019, 34, 592-601.	3.0	12
254	Anticoagulation and antibacterial functional coating on vascular implant interventional medical catheter. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2868-2877.	3.4	12
255	Enhancement of strength and ductility by Cu-rich precipitation in Cu-bearing 304L austenitic stainless steel. Materials Letters, 2020, 272, 127815.	2.6	12
256	In Vitro Biocompatibility of a New High Nitrogen Nickel Free Austenitic Stainless Steel. Key Engineering Materials, 2007, 342-343, 605-608.	0.4	11
257	Microstructure evolution in CLAM steel under low cycle fatigue. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 356-359.	5.6	11
258	Effect of Cold Deformation on the Friction–Wear Property of a Biomedical Nickel-Free High-Nitrogen Stainless Steel. Acta Metallurgica Sinica (English Letters), 2016, 29, 217-227.	2.9	11
259	Hot deformation behavior of Cu-bearing antibacterial titanium alloy. Journal of Materials Science and Technology, 2018, 34, 1867-1875.	10.7	11
260	In vitro and in vivo studies on the biodegradable behavior and bone response of Mg69Zn27Ca4 metal glass for treatment of bone defect. Journal of Materials Science and Technology, 2019, 35, 2254-2262.	10.7	11
261	InÂvitro degradation and biocompatibility evaluation of fully biobased thermoplastic elastomers consisting of poly(β-myrcene) and poly(-lactide) as stent coating. Polymer Degradation and Stability, 2020, 179, 109254.	5.8	11
262	Passivation potential regulating corrosion resistance and antibacterial property of 316L-Cu stainless steel in different simulated body fluids. Materials Technology, 2021, 36, 118-130.	3.0	11
263	Oxidation behavior of ferritic/martensitic steels in flowing supercritical water. Journal of Materials Science and Technology, 2021, 64, 114-125.	10.7	11
264	Copper-Containing Alloy as Immunoregulatory Material in Bone Regeneration via Mitochondrial Oxidative Stress. Frontiers in Bioengineering and Biotechnology, 2020, 8, 620629.	4.1	11
265	Enhanced initial biodegradation resistance of the biomedical Mg-Cu alloy by surface nanomodification. Journal of Magnesium and Alloys, 2023, 11, 2776-2788.	11.9	11
266	Mechanisms of Hierarchical Topographies Tuning Bacteria and Cell Biological Responses to the Surfaces of Pure Titanium and Cu-Bearing Titanium Alloy. ACS Applied Materials & Interfaces, 2022, 14, 19226-19240.	8.0	11
267	Biological behaviour of human umbilical artery smooth muscle cell grown on nickel-free and nickel-containing stainless steel for stent implantation. Scientific Reports, 2016, 6, 18762.	3.3	10
268	Improvement of notch fatigue properties of ultra-high CM400 maraging steel through shot peening. Journal of Materials Research, 2017, 32, 4424-4432.	2.6	10
269	Cu-bearing stainless steel reduces cytotoxicity and crystals adhesion after ureteral epithelial cells exposing to calcium oxalate monohydrate. Scientific Reports, 2018, 8, 14094.	3.3	10
270	Optimized antibacterial treatment for the Cu-bearing 420 stainless steel. Materials Technology, 2018, 33, 699-708.	3.0	10

#	Article	IF	CITATIONS
271	A Ca-deficientca-deficient hydroxyapatite (CDHA)/MgF2 bi-layer coating with unique nano-scale topography on biodegradable high-purity Mg. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110911.	5.0	10
272	Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa. Journal of Materials Science and Technology, 2022, 109, 282-296.	10.7	10
273	The impact toughness of a nitride-strengthened martensitic heat resistant steel. Science China Technological Sciences, 2012, 55, 1858-1862.	4.0	9
274	Dynamic Continuous Cooling Transformation Behavior of A Novel Cu-bearing Pipeline Steel. ISIJ International, 2016, 56, 2284-2289.	1.4	9
275	High-Temperature Oxidation Behavior of SIMP Steel at 800°C. Oxidation of Metals, 2018, 89, 49-60.	2.1	9
276	Hot Deformation Behavior of an Ultra-High-Strength Fe–Ni–Co-Based Maraging Steel. Acta Metallurgica Sinica (English Letters), 2019, 32, 1161-1172.	2.9	9
277	Study on the antibacterial mechanism of Cu-bearing titanium alloy in the view of materials science. Materials Technology, 2020, 35, 11-20.	3.0	9
278	Study on Microbiologically Influenced Corrosion Resistance of Stainless Steels With Weld Seams. Frontiers in Materials, 2020, 7, .	2.4	9
279	Understanding main factors controlling high cycle fatigue crack initiation and propagation of high strength maraging stainless steels with Ti addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140589.	5.6	9
280	Microstructural effects on mechanical properties and degradation behavior of Mg–Cu alloy. Materialia, 2021, 16, 101089.	2.7	9
281	Biosafety and biodegradation studies of <scp>AZ31B</scp> magnesium alloy carotid artery stent in vitro and in vivo. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 239-248.	3.4	9
282	Preliminary study on biocorrosion inhibition effect of Ti-5Cu alloy against marine bacterium Pseudomonas aeruginosa. Applied Surface Science, 2022, 578, 151981.	6.1	9
283	MgCu coating on Ti6Al4V alloy for orthopedic application. Materials Letters, 2018, 233, 35-38.	2.6	8
284	In vivo research on Cu-bearing ureteral stent. Journal of Materials Science: Materials in Medicine, 2019, 30, 83.	3.6	8
285	Microstructure, mechanical and corrosion properties of Mg–Zn–Nd alloy with different accumulative area reduction after room-temperature drawing. Rare Metals, 2021, 40, 897-907.	7.1	8
286	Promoting osteointegration effect of Cu-alloyed titanium in ovariectomized rats. International Journal of Energy Production and Management, 2022, 9, rbac011.	3.7	8
287	Cu-bearing steel reduce inflammation after stent implantation. Journal of Materials Science: Materials in Medicine, 2015, 26, 114.	3.6	7
288	Preparation and <i>in vitro</i> degradation characterization of Si-containing coating on AZ31B alloy. Materials Technology, 2016, 31, 828-835.	3.0	7

#	Article	IF	CITATIONS
289	The role of prismatic slip dependent dynamic recrystallization in the fabrication of a submicrocrystalline Ti-Cu alloy with high thermostability. Materials and Design, 2020, 188, 108475.	7.0	7
290	An Antibacterial Strategy of Mg-Cu Bone Grafting in Infection-Mediated Periodontics. BioMed Research International, 2020, 2020, 1-9.	1.9	7
291	Effects of ECAP extrusion on the mechanical and biodegradable properties of an extruded Mg-1.5Zn-0.5Y-0.5Zr alloy. Materials Technology, 2022, 37, 135-142.	3.0	7
292	High nitrogen stainless steel drug-eluting stent - Assessment of pharmacokinetics and preclinical safety in vivo. Bioactive Materials, 2020, 5, 779-786.	15.6	7
293	Fabrication of biodegradable MgXCu(X=0, 0.1, 0.4, 0.7) coating on Ti6Al4V alloy with enhanced antibacterial property. Materials Technology, 2021, 36, 179-188.	3.0	7
294	Transfer from M3B2 boride to BN nitride in 9Cr3W3CoB martensitic heat-resistant steel. Journal of Materials Research and Technology, 2021, 13, 513-523.	5.8	7
295	Macroporous and Antibacterial Hydrogels Enabled by Incorporation of Mg-Cu Alloy Particles for Accelerating Skin Wound Healing. Acta Metallurgica Sinica (English Letters), 2022, 35, 853-866.	2.9	7
296	The effect of high temperature aging on the corrosion resistance, mechanical property and antibacterial activity of Cu-2205 DSS. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112309.	5.0	7
297	Cu addition retards the static recrystallization of cold-deformed 316L biomedical stainless steel. Journal of Materials Research and Technology, 2022, 19, 1673-1677.	5.8	7
298	An alternative magnesium-based root canal disinfectant: Preliminary study of its efficacy against Enterococcus faecalis and Candida albicans in vitro. Progress in Natural Science: Materials International, 2014, 24, 441-445.	4.4	6
299	Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 173-180.	5.6	6
300	Thermodynamic Calculation Study on Effect of Manganese on Stability of Austenite in High Nitrogen Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3284-3288.	2.2	6
301	Hot Deformation Behavior and Processing Map of a Cu-Bearing 2205 Duplex Stainless Steel. Acta Metallurgica Sinica (English Letters), 2019, 32, 1537-1548.	2.9	6
302	Study on W-rich M3B2 borides in a 9Cr3W3CoB heat-resistant steel. Journal of Materials Research and Technology, 2021, 10, 594-604.	5.8	6
303	Novel Cu-bearing stainless steel: A promising food preservation material. Journal of Materials Science and Technology, 2022, 113, 246-252.	10.7	6
304	Microstructure Evolution and Deformation Mechanisms of As-Cast Antibacterial Ti6Al4V-5Cu Alloy for Isothermal Forging Process. Materials, 2022, 15, 3349.	2.9	6
305	Biodegradable Metals for Orthopedic Applications. , 2017, , 275-309.		5
306	Antiâ€fibrotic function of Cuâ€bearing stainless steel for reducing recurrence of urethral stricture after stent implantation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2019-2028.	3.4	5

#	Article	IF	CITATIONS
307	Study of TiCu/TiCuN multilayer films with antibacterial activity. Materials Technology, 2020, 35, 475-482.	3.0	5
308	A novel laminated metal composite with superior interfacial bonding composed of ultrahigh-strength maraging steel and 316L stainless steel. Journal of Iron and Steel Research International, 2020, 27, 433-439.	2.8	5
309	Microstructural Evolution and Biodegradation Response of Mg–2Zn–0.5Nd Alloy During Tensile and Compressive Deformation. Acta Metallurgica Sinica (English Letters), 2021, 34, 834-844.	2.9	5
310	Optimized Mechanical Properties, Corrosion Resistance and Bactericidal Ability of Ti-15Zr-xCu Biomedical Alloys During Aging Treatment. Acta Metallurgica Sinica (English Letters), 2022, 35, 304-316.	2.9	5
311	Fabrication of ultrafine-grained Ti-15Zr-xCu alloys through martensite decompositions under thermomechanical coupling conditions. Journal of Materials Science and Technology, 2022, 127, 19-28.	10.7	5
312	Study of TiCuN/ZrN multilayer coatings with adjustable combination properties deposited on TiCu alloy. Vacuum, 2022, 202, 111202.	3.5	5
313	Biocompatibility of surface-modified magnesium and magnesium alloys. , 2015, , 231-260.		4
314	Enhancing general corrosion resistance of biomedical high nitrogen nickel-free stainless steel by water treatment. Materials Letters, 2019, 251, 196-200.	2.6	4
315	Investigation on Corrosion Resistance of Welded Cu-Bearing 304L Stainless Steel Against Pseudomonas aeruginosa. Frontiers in Materials, 2020, 7, .	2.4	4
316	Cytotoxicity of Ti–6Al–4V–5Cu Alloy to MC3T3-E1 Cells. Acta Metallurgica Sinica (English Letters), 2021, 34, 694-700.	2.9	4
317	Stability of passive film and antibacterial durability of Cu-bearing L605 alloy in simulated physiological solutions. Rare Metals, 2021, 40, 1126-1133.	7.1	4
318	Strength, strain capacity and toughness of five dual-phase pipeline steels. Journal of Iron and Steel Research International, 2021, 28, 752-761.	2.8	4
319	Effect of tempering temperature on the microstructure, corrosion resistance, and antibacterial properties of Cuâ€bearing martensitic stainless steel. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 1668.	1.5	4
320	Effects of Different Rare Earth Elements on the Degradation and Mechanical Properties of the ECAP Extruded Mg Alloys. Materials, 2022, 15, 627.	2.9	4
321	Enhanced Bio-corrosion Resistance by Cu Alloying in a Micro-alloyed Pipeline Steel. Acta Metallurgica Sinica (English Letters), 2022, 35, 1731-1743.	2.9	4
322	Enhancing General Corrosion Resistance of Biomedical High Nitrogen Nickel-Free Stainless Steel by Nitric Acid Passivation. Acta Metallurgica Sinica (English Letters), 2020, 33, 307-312.	2.9	3
323	Influence of microstructure modification on corrosion resistance of friction stir processing biodegradable Mg-Zn-Nd alloy. Materials Technology, 2020, , 1-6.	3.0	3
324	Effect of copper content on the biodegradation behavior of Fe-Mn-C alloy system. Materials Technology, 2022, 37, 1109-1119.	3.0	3

#	Article	IF	CITATIONS
325	Inhibition efficiency of 304-Cu stainless steel against oral bacterial biofilm. Journal of Applied Biomaterials and Functional Materials, 2022, 20, 228080002110652.	1.6	3
326	A Degradable and Osteogenic Mg-Based MAO-MT-PLGA Drug/Ion Delivery System for Treating an Osteoporotic Fracture. Pharmaceutics, 2022, 14, 1481.	4.5	3
327	Introduction to Heat-Resistant Steels. Engineering Materials, 2015, , 1-24.	0.6	2
328	Influence of Strontium phosphate Coating on the Degradation of Physical Vapor Deposition Sprayed Mg Coating on Ti6Al4V Substrate to Promote Bone Tissue Healing. Frontiers in Materials, 2020, 7, .	2.4	2
329	Corrosion resistance of Cuâ€bearing 316L stainless steel tuned by various passivation potentials. Surface and Interface Analysis, 2021, 53, 592-602.	1.8	2
330	Creep of Heat-Resistant Steels. Engineering Materials, 2015, , 163-189.	0.6	2
331	Mitigation of microbial corrosion by Cu addition to X65 pipeline steel by Pseudomonas aeruginosa MCCC 1A00099. Archives of Microbiology, 2022, 204, 299.	2.2	2
332	Microstructural Stability of Heat-Resistant Steels. Engineering Materials, 2015, , 135-161.	0.6	1
333	In vitro evaluation of cell compatibility and hemocompatibility of a Cu-bearing titanium alloy. International Journal of Computational Materials Science and Surface Engineering, 2016, 6, 228.	0.2	1
334	Microstructures, Corrosion and Mechanical Properties of Mg–Si Alloys as Biodegradable Implant Materials. Minerals, Metals and Materials Series, 2019, , 151-157.	0.4	1
335	Enhancing Strain Capacity by the Introduction of Pearlite in Bainite and Polygonal Ferrite Dual-Phase Pipeline Steel. Materials, 2021, 14, 5358.	2.9	1
336	Study of the Osteoimmunomodulatory Properties of Curcumin-Modified Copper-Bearing Titanium. Molecules, 2022, 27, 3205.	3.8	1
337	Conventional Heat-Resistant Steels. Engineering Materials, 2015, , 27-43.	0.6	0
338	Construction of bio-functional Mg/HA composite layered coating for orthopedic application. Science China Technological Sciences, 2021, 64, 2541-2550.	4.0	0
339	Hot Deformation of Heat-Resistant Steels. Engineering Materials, 2015, , 191-215.	0.6	0
340	In Vitro Cytocompatibility and Osteogenic Potential of Biodegradable Mg–Sr Alloys. , 2018, , 425-436.		0

In Vitro Cytocompatibility and Osteogenic Potential of Biodegradable Mg–Sr Alloys. , 2018, , 425-436. 340