
Kenneth M Humphries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5347361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. Journal of Clinical Investigation, 2012, 122, 1222-1232.	3.9	340
2	Selective Inactivation of α-Ketoglutarate Dehydrogenase and Pyruvate Dehydrogenase: Reaction of Lipoic Acid with 4-Hydroxy-2-nonenalâ€. Biochemistry, 1998, 37, 15835-15841.	1.2	329
3	Oxidative Modification and Inactivation of the Proteasome during Coronary Occlusion/Reperfusion. Journal of Biological Chemistry, 2001, 276, 30057-30063.	1.6	328
4	Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. Journal of Clinical Investigation, 2008, 118, 3588-3597.	3.9	305
5	Inhibition of NADH-Linked Mitochondrial Respiration by 4-Hydroxy-2-nonenalâ€. Biochemistry, 1998, 37, 552-557.	1.2	220
6	Regulation of cAMP-dependent Protein Kinase Activity by Glutathionylation. Journal of Biological Chemistry, 2002, 277, 43505-43511.	1.6	159
7	Enhanced Dephosphorylation of cAMP-dependent Protein Kinase by Oxidation and Thiol Modification. Journal of Biological Chemistry, 2005, 280, 2750-2758.	1.6	122
8	Reversible Inhibition of α-Ketoglutarate Dehydrogenase by Hydrogen Peroxide:  Glutathionylation and Protection of Lipoic Acid. Biochemistry, 2008, 47, 473-478.	1.2	121
9	Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-1² uptake in astrocytes. Molecular Metabolism, 2018, 9, 141-155.	3.0	119
10	Selective inactivation of redox-sensitive mitochondrial enzymes during cardiac reperfusion. Archives of Biochemistry and Biophysics, 2002, 406, 222-228.	1.4	92
11	Aging Promotes Sirtuin 3–Dependent Cartilage Superoxide Dismutase 2 Acetylation and Osteoarthritis. Arthritis and Rheumatology, 2016, 68, 1887-1898.	2.9	82
12	Loss of mitochondrial protease ClpP protects mice from dietâ€induced obesity and insulin resistance. EMBO Reports, 2018, 19, .	2.0	75
13	Peroxisome Proliferator–Activated Receptor α Protects Capillary Pericytes in the Retina. American Journal of Pathology, 2014, 184, 2709-2720.	1.9	71
14	Selective Inhibition of Deactivated Mitochondrial Complex I by Biguanides. Biochemistry, 2015, 54, 2011-2021.	1.2	69
15	Mitochondrial respiration and redox coupling in articular chondrocytes. Arthritis Research and Therapy, 2015, 17, 54.	1.6	63
16	Lysine Acetylation Activates Mitochondrial Aconitase in the Heart. Biochemistry, 2015, 54, 4008-4018.	1.2	62
17	Redox Regulation of cAMP-dependent Protein Kinase Signaling. Journal of Biological Chemistry, 2007, 282, 22072-22079.	1.6	61
18	Aging: A shift from redox regulation to oxidative damage. Free Radical Research, 2006, 40, 1239-1243.	1.5	58

KENNETH M HUMPHRIES

#	Article	IF	CITATIONS
19	Metabolic inflexibility and protein lysine acetylation in heart mitochondria of a chronic model of TypeÂ1 diabetes. Biochemical Journal, 2013, 449, 253-261.	1.7	53
20	PKA, PKC, and AKAP localization in and around the neuromuscular junction. BMC Neuroscience, 2001, 2, 17.	0.8	52
21	Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 411-428.	2.9	50
22	AG311, a small molecule inhibitor of complex I and hypoxia-induced HIF-1α stabilization. Cancer Letters, 2017, 388, 149-157.	3.2	45
23	Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart. Journal of Biological Chemistry, 2017, 292, 4423-4433.	1.6	44
24	cAMP-dependent Protein Kinase (PKA) Signaling Is Impaired in the Diabetic Heart. Journal of Biological Chemistry, 2015, 290, 29250-29258.	1.6	41
25	Cardiac Insulin Signaling Regulates Glycolysis Through Phosphofructokinase 2 Content and Activity. Journal of the American Heart Association, 2017, 6, .	1.6	37
26	PPARα is essential for retinal lipid metabolism and neuronal survival. BMC Biology, 2017, 15, 113.	1.7	36
27	Lead isotopic and chalcophile element compositions in the environment near a zinc smelting–secondary zinc recovery facility, Palmerton, Pennsylvania, USA. Applied Geochemistry, 2001, 16, 207-229.	1.4	35
28	Acute Inhibition of Fatty Acid Import Inhibits GLUT4 Transcription in Adipose Tissue, but Not Skeletal or Cardiac Muscle Tissue, Partly Through Liver X Receptor (LXR) Signaling. Diabetes, 2010, 59, 800-807.	0.3	32
29	Nutrient sensing and utilization: Getting to the heart of metabolic flexibility. Biochimie, 2016, 124, 74-83.	1.3	31
30	Neuroprotective effects of PPARÎ \pm in retinopathy of type 1 diabetes. PLoS ONE, 2019, 14, e0208399.	1.1	31
31	Inhibition of succinate-linked respiration and complex II activity by hydrogen peroxide. Archives of Biochemistry and Biophysics, 2009, 488, 69-75.	1.4	28
32	Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioningâ~†. Advanced Drug Delivery Reviews, 2009, 61, 1324-1331.	6.6	27
33	Comparative Immunoreactivity of Anti-trifluoroacetyl (TFA) Antibody and Anti-lipoic Acid Antibody in Primary Biliary Cirrhosis: Searching for a Mimic. Journal of Autoimmunity, 2000, 15, 51-60.	3.0	25
34	Enhanced GLUT4-Dependent Glucose Transport Relieves Nutrient Stress in Obese Mice Through Changes in Lipid and Amino Acid Metabolism. Diabetes, 2016, 65, 3585-3597.	0.3	24
35	A biallelic pathogenic variant in the <scp><i>OGDH</i></scp> gene results in a neurological disorder with features of a mitochondrial disease. Journal of Inherited Metabolic Disease, 2021, 44, 388-400.	1.7	24
36	A Small Molecule with Anticancer and Antimetastatic Activities Induces Rapid Mitochondrial-Associated Necrosis in Breast Cancer. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 392-404.	1.3	21

Kenneth M Humphries

#	Article	IF	CITATIONS
37	GC–MS metabolic profiling reveals fructose-2,6-bisphosphate regulates branched chain amino acid metabolism in the heart during fasting. Metabolomics, 2019, 15, 18.	1.4	18
38	Mitochondrial superoxide production and respiratory activity: Biphasic response to ischemic duration. Archives of Biochemistry and Biophysics, 2009, 484, 87-93.	1.4	16
39	Sirt5 Deficiency Causes Posttranslational Protein Malonylation and Dysregulated Cellular Metabolism in Chondrocytes Under Obesity Conditions. Cartilage, 2021, 13, 1185S-1199S.	1.4	16
40	Identification of Mitochondrial Electron Transport Chain-Mediated NADH Radical Formation by EPR Spin-Trapping Techniques. Biochemistry, 2011, 50, 10792-10803.	1.2	15
41	Enhancing cardiac glycolysis causes an increase in PDK4 content in response to short-term high-fat diet. Journal of Biological Chemistry, 2019, 294, 16831-16845.	1.6	13
42	GC–MS method for metabolic profiling of mouse femoral head articular cartilage reveals distinct effects of tissue culture and development. Osteoarthritis and Cartilage, 2019, 27, 1361-1371.	0.6	12
43	Insulin signaling alters antioxidant capacity in the diabetic heart. Redox Biology, 2021, 47, 102140.	3.9	11
44	Inhibition of mitochondrial respiration by phosphoenolpyruvate. Archives of Biochemistry and Biophysics, 2011, 514, 68-74.	1.4	6
45	Recent advances in understanding glucose transport and glucose disposal. F1000Research, 2020, 9, 639.	0.8	6
46	Diabetes induced decreases in PKA signaling in cardiomyocytes: The role of insulin. PLoS ONE, 2020, 15, e0231806.	1.1	5
47	PFKFB3â€dependent glucose metabolism regulates 3T3â€L1 adipocyte development. FASEB Journal, 2021, 35, e21728.	0.2	3
48	Cardiac Reperfusion Injury: Aging, Lipid Peroxidation, and Mitochondrial Function. , 2002, , 95-111.		1
49	Inactivation and Inhibition of Alpha-Ketoglutarate Dehydrogenase. Oxidative Stress and Disease, 2008, ,	0.3	1
50	MnSod deficiency causes significant mitochondrial abnormalities and contractile dysfunction in skeletal muscle, but does not decrease muscle mass. Free Radical Biology and Medicine, 2017, 112, 48.	1.3	0
51	Increasing Glycolysis Protects Cardiac Function Against High Fat Dietâ€Induced Cardiomyopathy. FASEB Journal, 2021, 35, .	0.2	0
52	Inhibition of succinateâ€linked mitochondrial respiration by hydrogen peroxide. FASEB Journal, 2008, 22, 1033.4.	0.2	0
53	Abstract 4451: Novel small molecule AG311 induces tumor cell death through inhibition of mitochondrial electron transport. , 2015, , .		0
54	Muscle specific MnSOD deficiency leads to complex Ilâ€specific inactivity of ETC and contractile dysfunction, but increases muscle mass. FASEB Journal, 2018, 32, 618.16.	0.2	0

#	Article	IF	CITATIONS
55	P66Shc is an Apoptotic Rheostat Whose Targeted ROS Inhibition Improves Myocardial Infarction Outcomes. SSRN Electronic Journal, 0, , .	0.4	О
56	Diabetes induced decreases in PKA signaling in cardiomyocytes: The role of insulin. , 2020, 15, e0231806.		0
57	Diabetes induced decreases in PKA signaling in cardiomyocytes: The role of insulin. , 2020, 15, e0231806.		Ο
58	Diabetes induced decreases in PKA signaling in cardiomyocytes: The role of insulin. , 2020, 15, e0231806.		0
59	Diabetes induced decreases in PKA signaling in cardiomyocytes: The role of insulin. , 2020, 15, e0231806.		Ο
60	Diabetes induced decreases in PKA signaling in cardiomyocytes: The role of insulin. , 2020, 15, e0231806.		0
61	Diabetes induced decreases in PKA signaling in cardiomyocytes: The role of insulin. , 2020, 15, e0231806.		0