
Marcelo D T Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5346695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peptide Design Principles for Antimicrobial Applications. Journal of Molecular Biology, 2019, 431, 3547-3567.	2.0	273
2	Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis. Cell, 2019, 179, 459-469.e9.	13.5	208
3	In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nature Communications, 2018, 9, 1490.	5.8	179
4	Structure-function-guided exploration of the antimicrobial peptide polybia-CP identifies activity determinants and generates synthetic therapeutic candidates. Communications Biology, 2018, 1, 221.	2.0	111
5	Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Current Opinion in Microbiology, 2017, 37, 95-102.	2.3	100
6	Minute-scale detection of SARS-CoV-2 using a low-cost biosensor composed of pencil graphite electrodes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	93
7	Low-cost biosensor for rapid detection of SARS-CoV-2 at the point of care. Matter, 2021, 4, 2403-2416.	5.0	91
8	Yeast-Based Synthetic Biology Platform for Antimicrobial Peptide Production. ACS Synthetic Biology, 2018, 7, 896-902.	1.9	76
9	Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 326.	1.8	70
10	Mining for encrypted peptide antibiotics in the human proteome. Nature Biomedical Engineering, 2022, 6, 67-75.	11.6	64
11	Identification of Novel Cryptic Multifunctional Antimicrobial Peptides from the Human Stomach Enabled by a Computational–Experimental Platform. ACS Synthetic Biology, 2018, 7, 2105-2115.	1.9	63
12	Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery. ACS Nano, 2021, 15, 2143-2164.	7.3	51
13	Repurposing a peptide toxin from wasp venom into antiinfectives with dual antimicrobial and immunomodulatory properties. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26936-26945.	3.3	48
14	Autonomous Treatment of Bacterial Infections <i>in Vivo</i> Using Antimicrobial Micro- and Nanomotors. ACS Nano, 2022, 16, 7547-7558.	7.3	48
15	Simple and inexpensive electrochemical paper-based analytical device for sensitive detection of Pseudomonas aeruginosa. Sensors and Actuators B: Chemical, 2020, 308, 127669.	4.0	46
16	Reprogramming biological peptides to combat infectious diseases. Chemical Communications, 2019, 55, 15020-15032.	2.2	45
17	Toward computer-made artificial antibiotics. Current Opinion in Microbiology, 2019, 51, 30-38.	2.3	44
18	Physical methods for controlling bacterial colonization on polymer surfaces. Biotechnology Advances, 2020, 43, 107586.	6.0	40

2

MARCELO D T TORRES

#	Article	IF	CITATIONS
19	Low-Cost Optodiagnostic for Minute-Time Scale Detection of SARS-CoV-2. ACS Nano, 2021, 15, 17453-17462.	7.3	40
20	Selective antibacterial activity of the cationic peptide PaDBS1R6 against Gram-negative bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1375-1387.	1.4	38
21	Novel designed VmCT1 analogs with increased antimicrobial activity. European Journal of Medicinal Chemistry, 2017, 126, 456-463.	2.6	37
22	Short Cationic Peptide Derived from Archaea with Dual Antibacterial Properties and Anti-Infective Potential. ACS Infectious Diseases, 2019, 5, 1081-1086.	1.8	37
23	Natural and redesigned wasp venom peptides with selective antitumoral activity. Beilstein Journal of Organic Chemistry, 2018, 14, 1693-1703.	1.3	35
24	Molecular Dynamics for Antimicrobial Peptide Discovery. Infection and Immunity, 2021, 89, .	1.0	33
25	Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs. Biochemistry, 2019, 58, 3802-3812.	1.2	32
26	A Computationally Designed Peptide Derived from <i>Escherichia coli</i> as a Potential Drug Template for Antibacterial and Antibiofilm Therapies. ACS Infectious Diseases, 2018, 4, 1727-1736.	1.8	30
27	Decoralin Analogs with Increased Resistance to Degradation and Lower Hemolytic Activity. ChemistrySelect, 2017, 2, 18-23.	0.7	29
28	Coatable and Resistance-Proof Ionic Liquid for Pathogen Eradication. ACS Nano, 2021, 15, 966-978.	7.3	28
29	Polynitroxide copolymers to reduce biofilm fouling on surfaces. Polymer Chemistry, 2018, 9, 5308-5318.	1.9	26
30	Antiplasmodial activity study of angiotensin II via Ala scan analogs. Journal of Peptide Science, 2014, 20, 640-648.	0.8	24
31	Antimicrobial activity of leucineâ€substituted decoralin analogs with lower hemolytic activity. Journal of Peptide Science, 2017, 23, 818-823.	0.8	24
32	Novel bioactive peptides from PD-L1/2, a type 1 ribosome inactivating protein from Phytolacca dioica L. Evaluation of their antimicrobial properties and anti-biofilm activities. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1425-1435.	1.4	24
33	Magnetic Surfactant Ionic Liquids and Polymers With Tetrahaloferrate (III) Anions as Antimicrobial Agents With Low Cytotoxicity. Colloids and Interface Science Communications, 2018, 22, 11-13.	2.0	24
34	Antibiofilm Peptides: Relevant Preclinical Animal Infection Models and Translational Potential. ACS Pharmacology and Translational Science, 2021, 4, 55-73.	2.5	23
35	Synthetic Antibiotic Derived from Sequences Encrypted in a Protein from Human Plasma. ACS Nano, 2022, 16, 1880-1895.	7.3	23
36	The effect of lysine substitutions in the biological activities of the scorpion venom peptide VmCT1. European Journal of Pharmaceutical Sciences, 2019, 136, 104952.	1.9	21

#	Article	IF	CITATIONS
37	A study of the antiâ€plasmodium activity of angiotensin II analogs. Journal of Peptide Science, 2013, 19, 575-580.	0.8	19
38	Computer-Aided Design of Mastoparan-like Peptides Enables the Generation of Nontoxic Variants with Extended Antibacterial Properties. Journal of Medicinal Chemistry, 2019, 62, 8140-8151.	2.9	19
39	Wasp venom peptide as a new antichagasic agent. Toxicon, 2020, 181, 71-78.	0.8	19
40	Angiotensin II-derived constrained peptides with antiplasmodial activity and suppressed vasoconstriction. Scientific Reports, 2017, 7, 14326.	1.6	17
41	The wasp venom antimicrobial peptide <scp>polybiaâ€CP</scp> and its synthetic derivatives display antiplasmodial and anticancer properties. Bioengineering and Translational Medicine, 2020, 5, e10167.	3.9	17
42	Highly Potential Antiplasmodial Restricted Peptides. Chemical Biology and Drug Design, 2015, 85, 163-171.	1.5	16
43	Debulking different Corona (SARS-CoV-2 delta, omicron, OC43) and Influenza (H1N1, H3N2) virus strains by plant viral trap proteins in chewing gums to decrease infection and transmission. Biomaterials, 2022, 288, 121671.	5.7	16
44	Anticancer activity of VmCT1 analogs against MCFâ€7 cells. Chemical Biology and Drug Design, 2018, 91, 588-596.	1.5	14
45	Antimicrobial Susceptibility Testing of Antimicrobial Peptides Requires New and Standardized Testing Structures. ACS Infectious Diseases, 2021, 7, 2205-2208.	1.8	14
46	Methods for the design and characterization of peptide antibiotics. Methods in Enzymology, 2022, 663, 303-326.	0.4	13
47	Angiotensin II restricted analogs with biological activity in the erythrocytic cycle of Plasmodium falciparum. Journal of Peptide Science, 2015, 21, 24-28.	0.8	12
48	The Importance of Ring Size and Position for the Antiplasmodial Activity of Angiotensin II Restricted Analogs. International Journal of Peptide Research and Therapeutics, 2014, 20, 277-287.	0.9	11
49	New linear antiplasmodial peptides related to angiotensin II. Malaria Journal, 2015, 14, 433.	0.8	11
50	Peptide Design Enables Reengineering of an Inactive Wasp Venom Peptide into Synthetic Antiplasmodial Agents. ChemistrySelect, 2018, 3, 5859-5863.	0.7	10
51	Repurposing the scorpion venom peptide VmCT1 into an active peptide against Gram-negative ESKAPE pathogens. Bioorganic Chemistry, 2019, 90, 103038.	2.0	10
52	Evidences for the action mechanism of angiotensin II and its analogs on <i>Plasmodium</i> sporozoite membranes. Journal of Peptide Science, 2016, 22, 132-142.	0.8	9
53	Photochemically-Generated Silver Chloride Nanoparticles Stabilized by a Peptide Inhibitor of Cell Division and Its Antimicrobial Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2464-2474.	1.9	8
54	Detection of SARS-CoV-2 with RAPID: A prospective cohort study. IScience, 2022, 25, 104055.	1.9	8

MARCELO D T TORRES

#	Article	IF	CITATIONS
55	Anti-plasmodial activity of bradykinin and analogs. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3311-3313.	1.0	7
56	Light-Emitting Probes for Labeling Peptides. Cell Reports Physical Science, 2020, 1, 100257.	2.8	7
57	Net charge tuning modulates the antiplasmodial and anticancer properties of peptides derived from scorpion venom. Journal of Peptide Science, 2021, 27, e3296.	0.8	7
58	Effects of Amino Acid Deletion on the Antiplasmodial Activity of Angiotensin II. International Journal of Peptide Research and Therapeutics, 2014, 20, 553-564.	0.9	6
59	Effects of the angiotensin II Ala-scan analogs in erythrocytic cycle of Plasmodium falciparum (in) Tj ETQq1 1 0.78	4314 rgB1 0.5	[/Qverlock]
60	Arg-substituted VmCT1 analogs reveals promising candidate for the development of new antichagasic agent. Parasitology, 2020, 147, 1810-1818.	0.7	6
61	Synthetic Host Defense Peptides Inhibit Venezuelan Equine Encephalitis Virus Replication and the Associated Inflammatory Response. Scientific Reports, 2020, 10, 21491.	1.6	6
62	Synthetic Peptide Derived from Scorpion Venom Displays Minimal Toxicity and Anti-infective Activity in an Animal Model. ACS Infectious Diseases, 2021, 7, 2736-2745.	1.8	6
63	Importance of N-Terminal Extremity Restriction in the Antiplasmodial Activity of Angiotensin II. , 2013, ,		0
64	Mechanistic Proposal for Restricted Peptides Action on Parasite Membrane. , 2015, , .		0
65	Linear Peptides Related to Angiotensin II with Antiplasmodial Activity. , 2015, , .		0