List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5346567/publications.pdf Version: 2024-02-01

Ιιλνι Ζηένι Χιι

#	Article	IF	CITATIONS
1	Gas-Phase Ozone Oxidation of Monoterpenes: Gaseous and Particulate Products. Journal of Atmospheric Chemistry, 1999, 34, 207-258.	3.2	495
2	ACE-Asia Intercomparison of a Thermal-Optical Method for the Determination of Particle-Phase Organic and Elemental Carbon. Environmental Science & amp; Technology, 2003, 37, 993-1001.	10.0	402
3	Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7760-7765.	7.1	308
4	Identification of Products Containing â^'COOH, â^'OH, and â^'CO in Atmospheric Oxidation of Hydrocarbons. Environmental Science & Technology, 1998, 32, 2357-2370.	10.0	261
5	When Aerosol Sulfate Goes Up, So Does Oxalate:Â Implication for the Formation Mechanisms of Oxalate. Environmental Science & Technology, 2005, 39, 128-133.	10.0	258
6	The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China. Atmospheric Environment, 2005, 39, 3735-3749.	4.1	253
7	Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou, China. Atmospheric Environment, 2008, 42, 6335-6350.	4.1	248
8	Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmospheric Chemistry and Physics, 2015, 15, 7619-7652.	4.9	224
9	Elemental Composition of HULIS in the Pearl River Delta Region, China: Results Inferred from Positive and Negative Electrospray High Resolution Mass Spectrometric Data. Environmental Science & Technology, 2012, 46, 7454-7462.	10.0	218
10	Generation of Reactive Oxygen Species Mediated by Humic-like Substances in Atmospheric Aerosols. Environmental Science & Technology, 2011, 45, 10362-10368.	10.0	215
11	Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs. Applied Catalysis B: Environmental, 2004, 54, 41-50.	20.2	197
12	Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model. Atmospheric Environment, 2012, 62, 228-242.	4.1	192
13	Charring Characteristics of Atmospheric Organic Particulate Matter in Thermal Analysis. Environmental Science & Technology, 2002, 36, 754-761.	10.0	190
14	Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China. Atmospheric Environment, 2006, 40, 3802-3815.	4.1	189
15	Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. Journal of Hazardous Materials, 2011, 186, 344-351.	12.4	188
16	Atmospheric photooxidation of alkylbenzenes—I. Carbonyl product analyses. Atmospheric Environment, 1997, 31, 2261-2280.	4.1	175
17	Identifying Airborne Carbonyl Compounds in Isoprene Atmospheric Photooxidation Products by Their PFBHA Oximes Using Gas Chromatography/Ion Trap Mass Spectrometry. Environmental Science & Technology, 1995, 29, 1923-1932.	10.0	174
18	Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms. Journal of Geophysical Research, 2006, 111, .	3.3	170

#	Article	IF	CITATIONS
19	Organosulfates in Humic-like Substance Fraction Isolated from Aerosols at Seven Locations in East Asia: A Study by Ultra-High-Resolution Mass Spectrometry. Environmental Science & Technology, 2012, 46, 13118-13127.	10.0	166
20	Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. Journal of Aerosol Science, 2010, 41, 74-87.	3.8	165
21	Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres. Geophysical Research Letters, 1999, 26, 1145-1148.	4.0	164
22	Contributions of isoprene, monoterpenes, <i>β</i> â€caryophyllene, and toluene to secondary organic aerosols in Hong Kong during the summer of 2006. Journal of Geophysical Research, 2008, 113, .	3.3	157
23	Aerosol Formation in the Cyclohexene-Ozone System. Environmental Science & Technology, 2000, 34, 4894-4901.	10.0	150
24	Tracerâ€based estimation of secondary organic carbon in the Pearl River Delta, south China. Journal of Geophysical Research, 2012, 117, .	3.3	149
25	Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China. Atmospheric Chemistry and Physics, 2010, 10, 6487-6500.	4.9	148
26	Characterization of PM2.5 Major Components and Source Investigation in Suburban Hong Kong: A One Year Monitoring Study. Aerosol and Air Quality Research, 2014, 14, 237-250.	2.1	144
27	Sulfate Formation Enhanced by a Cocktail of High NO _{<i>x</i>} , SO ₂ , Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An Observation-Based Modeling Investigation. Environmental Science & amp; Technology, 2016, 50, 7325-7334.	10.0	143
28	In-injection port thermal desorption and subsequent gas chromatography–mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. Journal of Chromatography A, 2004, 1059, 121-129.	3.7	139
29	Determination of primary combustion source organic carbon-to-elemental carbon (OCâ€7/â€EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method. Atmospheric Chemistry and Physics, 2016, 16, 5453-5465.	4.9	137
30	Identification and spatiotemporal variations of dominant PM10 sources over Hong Kong. Atmospheric Environment, 2006, 40, 1803-1815.	4.1	136
31	Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples. Journal of Chromatography A, 2008, 1200, 217-227.	3.7	133
32	The application of thermal methods for determining chemical composition of carbonaceous aerosols: A review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 1521-1541.	1.7	131
33	Effective Henry's law constants of glyoxal, glyoxylic acid, and glycolic acid. Geophysical Research Letters, 2009, 36, .	4.0	129
34	Uncertainties in Charring Correction in the Analysis of Elemental and Organic Carbon in Atmospheric Particles by Thermal/Optical Methods. Environmental Science & Technology, 2002, 36, 5199-5204.	10.0	127
35	Chemical characterization, the transport pathways and potential sources of PM2.5 in Shanghai: Seasonal variations. Atmospheric Research, 2015, 158-159, 66-78.	4.1	127
36	The formation of nitro-aromatic compounds under high NO _{<i>x</i>} and anthropogenic VOC conditions in urban Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 7649-7665.	4.9	127

#	Article	IF	CITATIONS
37	Determination of Airborne Carbonyls:Â Comparison of a Thermal Desorption/GC Method with the Standard DNPH/HPLC Method. Environmental Science & Technology, 2004, 38, 862-870.	10.0	123
38	Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China. Atmospheric Environment, 2013, 79, 110-118.	4.1	115
39	Refining temperature measures in thermal/optical carbon analysis. Atmospheric Chemistry and Physics, 2005, 5, 2961-2972.	4.9	114
40	Reactive Oxygen Species Production Mediated by Humic-like Substances in Atmospheric Aerosols: Enhancement Effects by Pyridine, Imidazole, and Their Derivatives. Environmental Science & Technology, 2015, 49, 6457-6465.	10.0	112
41	Abundance and seasonal characteristics of elemental and organic carbon in Hong Kong PM10. Atmospheric Environment, 2004, 38, 1511-1521.	4.1	110
42	Source apportionment of ambient volatile organic compounds in Hong Kong. Science of the Total Environment, 2010, 408, 4138-4149.	8.0	110
43	Extraction kinetics of copper, zinc, iron, and manganese from contaminated sediment using Disodium Ethylenediaminetetraacetate. Water, Air, and Soil Pollution, 1994, 75, 205-225.	2.4	108
44	Analysis of Sugars and Sugar Polyols in Atmospheric Aerosols by Chloride Attachment in Liquid Chromatography/Negative Ion Electrospray Mass Spectrometry. Environmental Science & Technology, 2007, 41, 2459-2466.	10.0	108
45	Multiple organ injury in male C57BL/6J mice exposed to ambient particulate matter in a real-ambient PM exposure system in Shijiazhuang, China. Environmental Pollution, 2019, 248, 874-887.	7.5	108
46	VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. Atmospheric Environment, 2013, 76, 125-135.	4.1	107
47	Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM ^{2.5} major components and source markers. Atmospheric Chemistry and Physics, 2015, 15, 1995-2008.	4.9	107
48	Sampling methods used for the collection of particle-phase organic and elemental carbon during ACE-Asia. Atmospheric Environment, 2003, 37, 1435-1449.	4.1	106
49	Carbonyl Emissions from Commercial Cooking Sources in Hong Kong. Journal of the Air and Waste Management Association, 2006, 56, 1091-1098.	1.9	99
50	Feasibility of Collection and Analysis of Airborne Carbonyls by On-Sorbent Derivatization and Thermal Desorption. Analytical Chemistry, 2002, 74, 1232-1240.	6.5	98
51	Atmospheric photooxidation of alkylbenzenes—II. Evidence of formation of epoxide intermediates. Atmospheric Environment, 1997, 31, 2281-2287.	4.1	96
52	Sources and oxidative potential of water-soluble humic-like substances (HULIS _{WS}) in fine particulate matter (PM _{2.5}) in Beijing. Atmospheric Chemistry and Physics, 2018, 18, 5607-5617.	4.9	92
53	Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber. Atmospheric Chemistry and Physics, 2015, 15, 9049-9062.	4.9	90
54	Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. Atmospheric Measurement Techniques, 2014, 7, 301-313.	3.1	89

#	Article	IF	CITATIONS
55	Organosulfates from Pinene and Isoprene over the Pearl River Delta, South China: Seasonal Variation and Implication in Formation Mechanisms. Environmental Science & Technology, 2014, 48, 9236-9245.	10.0	89
56	Size Distribution Characteristics of Elemental Carbon Emitted from Chinese Vehicles:Â Results of a Tunnel Study and Atmospheric Implications. Environmental Science & Technology, 2006, 40, 5355-5360.	10.0	88
57	Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry. Journal of Chromatography A, 2006, 1107, 175-181.	3.7	88
58	Potential impacts of two SO2 oxidation pathways on regional sulfate concentrations: Aqueous-phase oxidation by NO2 and gas-phase oxidation by Stabilized Criegee Intermediates. Atmospheric Environment, 2013, 68, 186-197.	4.1	87
59	Quantifying black carbon light absorption enhancement with aÂnovel statistical approach. Atmospheric Chemistry and Physics, 2018, 18, 289-309.	4.9	84
60	The secondary formation of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing. Atmospheric Chemistry and Physics, 2018, 18, 10693-10713.	4.9	84
61	Quantification of nitroaromatic compounds in atmospheric fine particulate matter in Hong Kong over 3 years: field measurement evidence for secondary formation derived from biomass burning emissions. Environmental Chemistry, 2016, 13, 665.	1.5	82
62	Simultaneous Determination of Mono- and Dicarboxylic Acids, ω-Oxo-carboxylic Acids, Midchain Ketocarboxylic Acids, and Aldehydes in Atmospheric Aerosol Samples. Environmental Science & Technology, 2005, 39, 7616-7624.	10.0	81
63	Size distributions of elemental carbon and its contribution to light extinction in urban and rural locations in the pearl river delta region, China. Atmospheric Chemistry and Physics, 2010, 10, 5107-5119.	4.9	81
64	Source apportioning of primary and secondary organic carbon in summer PM _{2.5} in Hong Kong using positive matrix factorization of secondary and primary organic tracer data. Journal of Geophysical Research, 2010, 115, .	3.3	77
65	Size distributions of water-soluble organic carbon in ambient aerosols and its size-resolved thermal characteristics. Atmospheric Environment, 2004, 38, 1061-1071.	4.1	76
66	Characterizing the thermodynamic and chemical composition factors controlling PM 2.5 nitrate: Insights gained from two years of online measurements in Hong Kong. Atmospheric Environment, 2015, 122, 864-875.	4.1	76
67	A study of acidity on PM2.5 in Hong Kong using online ionic chemical composition measurements. Atmospheric Environment, 2011, 45, 7081-7088.	4.1	75
68	Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment. Science of the Total Environment, 2016, 557-558, 386-394.	8.0	75
69	Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south China. Environmental Pollution, 2018, 233, 806-819.	7.5	74
70	Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting. Atmospheric Measurement Techniques, 2018, 11, 1233-1250.	3.1	74
71	Characteristics of submicron particulate matter at the urban roadside in downtown Hong Kong—Overview of 4 months of continuous highâ€resolution aerosol mass spectrometer measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7040-7058.	3.3	70
72	Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO ₂ . Atmospheric Chemistry and Physics, 2016, 16, 675-689.	4.9	70

#	Article	IF	CITATIONS
73	Impact of Secondary Organic Aerosol Tracers on Tracer-Based Source Apportionment of Organic Carbon and PM _{2.5} : A Case Study in the Pearl River Delta, China. ACS Earth and Space Chemistry, 2017, 1, 562-571.	2.7	68
74	Real-world emission factors of fifteen carbonyl compounds measured in a Hong Kong tunnel. Atmospheric Environment, 2007, 41, 1747-1758.	4.1	66
75	Evaluating the degree of oxygenation of organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Atmospheric Chemistry and Physics, 2013, 13, 8739-8753.	4.9	66
76	Molecular composition of urban organic aerosols on clear and hazy days in Beijing: a comparative study using FT-ICR MS. Environmental Chemistry, 2016, 13, 888.	1.5	66
77	Chemical Characterization of Water-Soluble Organic Aerosols at Jeju Island Collected During ACE-Asia. Environmental Chemistry, 2004, 1, 13.	1.5	64
78	Seasonal variations of water soluble composition (WSOC, Hulis and WSIIs) in PM1 and its implications on haze pollution in urban Shanghai, China. Atmospheric Environment, 2015, 123, 306-314.	4.1	64
79	Chemical characterization of humic-like substances (HULIS) in PM2.5 in Lanzhou, China. Science of the Total Environment, 2016, 573, 1481-1490.	8.0	63
80	Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS. Atmospheric Chemistry and Physics, 2018, 18, 10355-10371.	4.9	62
81	Concentrations of formaldehyde and other carbonyls in environments affected by incense burning. Journal of Environmental Monitoring, 2002, 4, 728-733.	2.1	61
82	Gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) emissions from commercial restaurants in Hong Kong. Journal of Environmental Monitoring, 2007, 9, 1402.	2.1	61
83	Insights into factors affecting nitrate in PM _{2.5} in a polluted high NO <i>_x</i> environment through hourly observations and size distribution measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4888-4902.	3.3	61
84	Dynamics of phytoplankton community structure in the South China Sea in response to the East Asian aerosol input. Biogeosciences, 2012, 9, 1519-1536.	3.3	58
85	Composition and sources of carbonaceous aerosols at three contrasting sites in Hong Kong. Journal of Geophysical Research, 2006, 111, .	3.3	57
86	Is vehicle exhaust a significant primary source of oxalic acid in ambient aerosols?. Geophysical Research Letters, 2007, 34, .	4.0	57
87	Effect of nitrate and sulfate relative abundance in PM2.5 on liquid water content explored through half-hourly observations of inorganic soluble aerosols at a polluted receptor site. Atmospheric Environment, 2014, 99, 24-31.	4.1	57
88	Organic tracer-based source analysis of PM 2.5 organic and elemental carbon: A case study at Dongguan in the Pearl River Delta, China. Atmospheric Environment, 2015, 118, 164-175.	4.1	57
89	Physical and chemical characterization of ambient aerosol by HRâ€ToFâ€AMS at a suburban site in Hong Kong during springtime 2011. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8625-8639.	3.3	56
90	Comparison of two methods for the determination of water-soluble organic carbon in atmospheric particles. Atmospheric Environment, 2003, 37, 865-870.	4.1	55

#	Article	IF	CITATIONS
91	Efficient control of atmospheric sulfate production based on three formation regimes. Nature Geoscience, 2019, 12, 977-982.	12.9	55
92	Sources and atmospheric processes impacting oxalate at a suburban coastal site in Hong Kong: Insights inferred from 1 year hourly measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9772-9788.	3.3	54
93	Assessment of Interactions between Transition Metals and Atmospheric Organics: Ascorbic Acid Depletion and Hydroxyl Radical Formation in Organic-Metal Mixtures. Environmental Science & Technology, 2020, 54, 1431-1442.	10.0	54
94	Roadside and rooftop measurements of polycyclic aromatic hydrocarbons in PM2.5 in urban Guangzhou: Evaluation of vehicular and regional combustion source contributions. Atmospheric Environment, 2011, 45, 7184-7191.	4.1	53
95	Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China. Science of the Total Environment, 2017, 593-594, 462-469.	8.0	53
96	Organic Peroxides and Sulfur Dioxide in Aerosol: Source of Particulate Sulfate. Environmental Science & Technology, 2019, 53, 10695-10704.	10.0	53
97	Source Apportionment of PM _{2.5} Using Hourly Measurements of Elemental Tracers and Major Constituents in an Urban Environment: Investigation of Timeâ€Resolution Influence. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5284-5300.	3.3	52
98	Abundance and Sources of Phthalic Acids, Benzene-Tricarboxylic Acids, and Phenolic Acids in PM _{2.5} at Urban and Suburban Sites in Southern China. ACS Earth and Space Chemistry, 2018, 2, 147-158.	2.7	51
99	Volatile organic compounds in the Pearl River Delta: Identification of source regions and recommendations for emission-oriented monitoring strategies. Atmospheric Environment, 2013, 76, 162-172.	4.1	50
100	Black carbon over the South China Sea and in various continental locations in South China. Atmospheric Chemistry and Physics, 2013, 13, 12257-12270.	4.9	50
101	One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong – Part 1: Inorganic ions and oxalate. Atmospheric Chemistry and Physics, 2014, 14, 9013-9027.	4.9	50
102	Contributions of vehicular carbonaceous aerosols to PM _{2.5} in a roadside environment in Hong Kong. Atmospheric Chemistry and Physics, 2014, 14, 9279-9293.	4.9	48
103	Aerosol size distribution characteristics of organosulfates in the Pearl River Delta region, China. Atmospheric Environment, 2016, 130, 23-35.	4.1	48
104	Measurement of organic mass to organic carbon ratio in ambient aerosol samples using a gravimetric technique in combination with chemical analysis. Atmospheric Environment, 2007, 41, 8857-8864.	4.1	47
105	Determination of Elemental and Organic Carbon in PM _{2.5} in the Pearl River Delta Region: Inter-Instrument (Sunset vs. DRI Model 2001 Thermal/Optical Carbon Analyzer) and Inter-Protocol Comparisons (IMPROVE vs. ACE-Asia Protocol). Aerosol Science and Technology, 2012, 46, 610-621.	3.1	47
106	Estimation and Uncertainty Analysis of Secondary Organic Carbon Using 1ÂYear of Hourly Organic and Elemental Carbon Data. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2774-2795.	3.3	47
107	Dithiothreitol (DTT) concentration effect and its implications on the applicability of DTT assay to evaluate the oxidative potential of atmospheric aerosol samples. Environmental Pollution, 2019, 251, 938-944.	7.5	46
108	Local and regional anthropogenic influence on PM2.5 elements in Hong Kong. Atmospheric Environment, 2007, 41, 5994-6004.	4.1	45

#	Article	IF	CITATIONS
109	Carbonyl emissions from vehicular exhausts sources in Hong Kong. Journal of the Air and Waste Management Association, 2012, 62, 221-234.	1.9	45
110	Polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China: Size distribution characteristics and size-resolved gas-particle partitioning. Atmospheric Environment, 2012, 54, 194-200.	4.1	44
111	Determination of gaseous carbonyl compounds by their pentafluorophenyl hydrazones with gas chromatography/mass spectrometry. Analytica Chimica Acta, 2009, 635, 84-93.	5.4	43
112	Relative contributions of secondary organic aerosol formation from toluene, xylenes, isoprene, and monoterpenes in Hong Kong and Guangzhou in the Pearl River Delta, China: an emissionâ€based box modeling study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 507-519.	3.3	43
113	Synthesis of Four Monoterpene-Derived Organosulfates and Their Quantification in Atmospheric Aerosol Samples. Environmental Science & Technology, 2017, 51, 6791-6801.	10.0	43
114	Hourly Measurements of Organic Molecular Markers in Urban Shanghai, China: Primary Organic Aerosol Source Identification and Observation of Cooking Aerosol Aging. ACS Earth and Space Chemistry, 2020, 4, 1670-1685.	2.7	43
115	Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: implications for inter-protocol data conversion. Atmospheric Measurement Techniques, 2016, 9, 4547-4560.	3.1	42
116	Multiphase Reactions between Secondary Organic Aerosol and Sulfur Dioxide: Kinetics and Contributions to Sulfate Formation and Aerosol Aging. Environmental Science and Technology Letters, 2019, 6, 768-774.	8.7	42
117	High level of source-specific particulate matter air pollution associated with cardiac arrhythmias. Science of the Total Environment, 2019, 657, 1285-1293.	8.0	41
118	Modeling the Mass Transfer of Semivolatile Organics in Combustion Aerosols. Environmental Science & amp; Technology, 1994, 28, 2278-2285.	10.0	39
119	Source analysis of high particulate matter days in Hong Kong. Atmospheric Environment, 2009, 43, 1196-1203.	4.1	39
120	A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer. Atmospheric Environment, 2016, 143, 300-312.	4.1	39
121	The development of a cell-based model for the assessment of carcinogenic potential upon long-term PM2.5 exposure. Environment International, 2019, 131, 104943.	10.0	39
122	Source apportionment of fine particulate matter in Macao, China with and without organic tracers: A comparative study using positive matrix factorization. Atmospheric Environment, 2019, 198, 183-193.	4.1	39
123	Source apportionment of PM _{2.5} in Shanghai based on hourly organic molecular markers and other source tracers. Atmospheric Chemistry and Physics, 2020, 20, 12047-12061.	4.9	39
124	Amplification of black carbon light absorption induced by atmospheric aging: temporal variation at seasonal and diel scales in urban Guangzhou. Atmospheric Chemistry and Physics, 2020, 20, 2445-2470.	4.9	38
125	Optical properties, source apportionment and redox activity of humic-like substances (HULIS) in airborne fine particulates in Hong Kong. Environmental Pollution, 2019, 255, 113087.	7.5	37
126	Organosulfates in atmospheric aerosols in Shanghai, China: seasonal and interannual variability, origin, and formation mechanisms. Atmospheric Chemistry and Physics, 2021, 21, 2959-2980.	4.9	37

#	Article	IF	CITATIONS
127	Impacts of Chemical Degradation on the Global Budget of Atmospheric Levoglucosan and Its Use As a Biomass Burning Tracer. Environmental Science & Technology, 2021, 55, 5525-5536.	10.0	37
128	On the Flip Side of Mask Wearing: Increased Exposure to Volatile Organic Compounds and a Risk-Reducing Solution. Environmental Science & 201, 700, 2021, 55, 14095-14104.	10.0	36
129	Secondary organic aerosol formation from ethylene in the urban atmosphere of Hong Kong: A multiphase chemical modeling study. Journal of Geophysical Research, 2011, 116, .	3.3	34
130	Organosulfur Compounds Formed from Heterogeneous Reaction between SO ₂ and Particulate-Bound Unsaturated Fatty Acids in Ambient Air. Environmental Science and Technology Letters, 2019, 6, 318-322.	8.7	34
131	Quantification of known and unknown terpenoid organosulfates in PM10 using untargeted LC–HRMS/MS: contrasting summertime rural Germany and the North China Plain. Environmental Chemistry, 2019, 16, 333.	1.5	33
132	Mechanism-based quantitative structure–activity relationships for the inhibition of substituted phenols on germination rate of Cucumis sativus. Chemosphere, 2002, 46, 241-250.	8.2	32
133	An Integrated Source Apportionment Methodology and Its Application over the Yangtze River Delta Region, China. Environmental Science & amp; Technology, 2018, 52, 14216-14227.	10.0	31
134	Effect of metal-organic interactions on the oxidative potential of mixtures of atmospheric humic-like substances and copper/manganese as investigated by the dithiothreitol assay. Science of the Total Environment, 2019, 697, 134012.	8.0	31
135	Abundance and sources of benzo[a]pyrene and other PAHs in ambient air in Hong Kong: A review of 20-year measurements (1997–2016). Chemosphere, 2020, 259, 127518.	8.2	31
136	Atmospheric phosphorus in the northern part of Lake Taihu, China. Chemosphere, 2011, 84, 785-791.	8.2	30
137	Non-polar organic compounds in autumn and winter aerosols in a typical city of eastern China: size distribution and impact of gas–particle partitioning on PM _{2.5} source apportionment. Atmospheric Chemistry and Physics, 2018, 18, 9375-9391.	4.9	29
138	Secondary organic aerosol tracers and malic acid in Hong Kong: seasonal trends and origins. Environmental Chemistry, 2013, 10, 381.	1.5	28
139	Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5629-5649.	3.3	28
140	Comparative Study of Particulate Organosulfates in Contrasting Atmospheric Environments: Field Evidence for the Significant Influence of Anthropogenic Sulfate and NOx. Environmental Science and Technology Letters, 2020, 7, 787-794.	8.7	28
141	Temporal variations and source apportionment of Hulis-C in PM2.5 in urban Shanghai. Science of the Total Environment, 2016, 571, 18-26.	8.0	27
142	Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China. Atmospheric Chemistry and Physics, 2016, 16, 8431-8446.	4.9	27
143	Estimating contributions of vehicular emissions to PM2.5 in a roadside environment: A multiple approach study. Science of the Total Environment, 2019, 672, 776-788.	8.0	27
144	Hourly measurements of organic molecular markers in urban Shanghai, China: Observation of enhanced formation of secondary organic aerosol during particulate matter episodic periods. Atmospheric Environment, 2020, 240, 117807.	4.1	27

#	Article	IF	CITATIONS
145	An Observation-Based Model for Secondary Inorganic Aerosols. Aerosol and Air Quality Research, 2014, 14, 862-878.	2.1	26
146	Characterization of secondary aerosol and its extinction effects on visibility over the Pearl River Delta Region, China. Journal of the Air and Waste Management Association, 2013, 63, 1012-1021.	1.9	25
147	Impacts of particulate matter (PM2.5) on the behavior of freshwater snail Parafossarulus striatulus. Scientific Reports, 2017, 7, 644.	3.3	25
148	Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003. Atmospheric Research, 2013, 120-121, 88-98.	4.1	24
149	Monoterpene and Sesquiterpene α-Hydroxy Organosulfates: Synthesis, MS/MS Characteristics, and Ambient Presence. Environmental Science & Technology, 2019, 53, 12278-12290.	10.0	24
150	Composition profile of oxygenated organic compounds and inorganic ions in PM2.5 in Hong Kong. Environmental Chemistry, 2010, 7, 338.	1.5	23
151	Nonpolar organic compounds in fine particles: quantification by thermal desorption–GC/MS and evidence for their significant oxidation in ambient aerosols in Hong Kong. Analytical and Bioanalytical Chemistry, 2011, 401, 3125-3139.	3.7	23
152	Quantifying the relationship between visibility degradation and PM2.5 constituents at a suburban site in Hong Kong: Differentiating contributions from hydrophilic and hydrophobic organic compounds. Science of the Total Environment, 2017, 575, 1571-1581.	8.0	23
153	Field Evidence of Fe-Mediated Photochemical Degradation of Oxalate and Subsequent Sulfate Formation Observed by Single Particle Mass Spectrometry. Environmental Science & Technology, 2020, 54, 6562-6574.	10.0	23
154	Chemical characteristics of PM2.5 and organic aerosol source analysis during cold front episodes in Hong Kong, China. Atmospheric Research, 2012, 118, 41-51.	4.1	22
155	Characteristics of Haze Pollution Episodes and Analysis of a Typical Winter Haze Process in Shanghai. Aerosol and Air Quality Research, 2016, 16, 1625-1637.	2.1	22
156	Aromatic formulas in ambient PM2.5 samples from Hong Kong determined using FT-ICR ultrahigh-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2018, 410, 6289-6304.	3.7	21
157	Potential exposure to fine particulate matter (PM2.5) and black carbon on jogging trails in Macau. Atmospheric Environment, 2019, 198, 23-33.	4.1	21
158	Comparative Assessment of Cooking Emission Contributions to Urban Organic Aerosol Using Online Molecular Tracers and Aerosol Mass Spectrometry Measurements. Environmental Science & Technology, 2021, 55, 14526-14535.	10.0	21
159	Nonpolar organic compounds as PM _{2.5} source tracers: Investigation of their sources and degradation in the Pearl River Delta, China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,862.	3.3	19
160	Tracer-based characterization of source variations of PM _{2.5} and organic carbon in Shanghai influenced by the COVID-19 lockdown. Faraday Discussions, 2021, 226, 112-137.	3.2	19
161	Determination of trace amounts of formaldehyde in acetone. Analytica Chimica Acta, 2007, 604, 134-138.	5.4	17
162	Enhancement in secondary particulate matter production due to mountain trapping. Atmospheric Research, 2014, 147-148, 227-236.	4.1	17

#	Article	IF	CITATIONS
163	Enhanced Wet Deposition of Waterâ€Soluble Organic Nitrogen During the Harvest Season: Influence of Biomass Burning and Inâ€Cloud Scavenging. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032699.	3.3	17
164	A multiple linear regression model with multiplicative log-normal error term for atmospheric concentration data. Science of the Total Environment, 2021, 767, 144282.	8.0	17
165	Modal Characteristics of Elemental and Organic Carbon in an Urban Location in Guangzhou, China. Aerosol Science and Technology, 2009, 43, 1108-1118.	3.1	16
166	Fabric Masks as a Personal Dosimeter for Quantifying Exposure to Airborne Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology, 2021, 55, 5128-5135.	10.0	16
167	Chemical Synthesis of Multifunctional Air Pollutants: Terpene-Derived Nitrooxy Organosulfates. Environmental Science & Technology, 2021, 55, 8573-8582.	10.0	16
168	Effects of Chemical Composition of PM2.5 on Visibility in a Semi-Rural City of Sichuan Basin. Aerosol and Air Quality Research, 2018, 18, 957-968.	2.1	16
169	Tracking separate contributions of diesel and gasoline vehicles to roadside PM _{2.5} through online monitoring of volatile organic compounds and PM _{2.5} organic and elemental carbon: a 6-year study in Hong Kong, Atmospheric Chemistry and Physics, 2020, 20, 9871-9882.	4.9	16
170	Measurement report: Characterization and source apportionment of coarse particulate matter in Hong Kong: insights into the constituents of unidentified mass and source origins in a coastal city in southern China. Atmospheric Chemistry and Physics, 2022, 22, 5017-5031.	4.9	16
171	Abundance and sources of ambient dioxins in Hong Kong: A review of dioxin measurements from 1997 to 2001. Chemosphere, 2005, 59, 1387-1398.	8.2	15
172	Wet and Dry Nitrogen Depositions in the Pearl River Delta, South China: Observations at Three Typical Sites With an Emphasis on Waterâ€Soluble Organic Nitrogen. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030983.	3.3	15
173	Hourly measurement of PM2.5-bound nonpolar organic compounds in Shanghai: Characteristics, sources and health risk assessment. Science of the Total Environment, 2021, 789, 148070.	8.0	15
174	Size Distributions of Polycyclic Aromatic Hydrocarbons at Two Receptor Sites in the Pearl River Delta Region, China: Implications of a Dominant Droplet Mode. Aerosol Science and Technology, 2011, 45, 101-112.	3.1	14
175	Isoprene Mixing Ratios Measured at Twenty Sites in China During 2012–2014: Comparison With Model Simulation. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033523.	3.3	14
176	Eighteen-year trends of local and non-local impacts to ambient PM10 in Hong Kong based on chemical speciation and source apportionment. Atmospheric Research, 2018, 214, 1-9.	4.1	13
177	Molecular and elemental marker-based source apportionment of fine particulate matter at six sites in Hong Kong, China. Science of the Total Environment, 2022, 813, 152652.	8.0	12
178	Minimizing Contamination from Plastic Labware in the Quantification of C16 and C18 Fatty Acids in Filter Samples of Atmospheric Particulate Matter and Their Utility in Apportioning Cooking Source Contribution to Urban PM2.5. Atmosphere, 2020, 11, 1120.	2.3	10
179	Speciation of carboxylic components in humic-like substances (HULIS) and source apportionment of HULIS in ambient fine aerosols (PM2.5) collected in Hong Kong. Environmental Science and Pollution Research, 2020, 27, 23172-23180.	5.3	10
180	Ambient Measurements of Heterogeneous Ozone Oxidation Rates of Oleic, Elaidic, and Linoleic Acid Using a Relative Rate Constant Approach in an Urban Environment. Geophysical Research Letters, 2021, 48, e2021GL095130.	4.0	10

JIAN ZHEN YU

#	Article	IF	CITATIONS
181	Role of microzooplankton grazing in regulating phytoplankton biomass and community structure in response to atmospheric aerosol input. Marine Ecology - Progress Series, 2014, 507, 69-79.	1.9	9
182	Inorganic Sulfur Species Formed upon Heterogeneous OH Oxidation of Organosulfates: A Case Study of Methyl Sulfate. ACS Earth and Space Chemistry, 2020, 4, 2041-2049.	2.7	9
183	Source apportionment of urban PM2.5 using positive matrix factorization with vertically distributed measurements of trace elements and nonpolar organic compounds. Atmospheric Pollution Research, 2021, 12, 200-207.	3.8	9
184	Simultaneous Determination of Aerosol Inorganic and Organic Nitrogen by Thermal Evolution and Chemiluminescence Detection. Environmental Science & amp; Technology, 2021, 55, 11579-11589.	10.0	9
185	Abundance of organosulfates derived from biogenic volatile organic compounds: Seasonal and spatial contrasts at four sites in China. Science of the Total Environment, 2022, 806, 151275.	8.0	9
186	Probing key organic substances driving new particle growth initiated by iodine nucleation in coastal atmosphere. Atmospheric Chemistry and Physics, 2020, 20, 9821-9835.	4.9	8
187	Determination of Total Aerosol Nitrogen by Thermal Evolution. Aerosol Science and Technology, 2004, 38, 382-390.	3.1	7
188	Comparison of characteristics of aerosol during rainy weather and cold air-dust weather in Guangzhou in late March 2012. Theoretical and Applied Climatology, 2016, 124, 451-459.	2.8	7
189	Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles. Atmospheric Chemistry and Physics, 2017, 17, 3659-3672.	4.9	7
190	Estimating primary vehicular emission contributions to PM2.5 using the Chemical Mass Balance model: Accounting for gas-particle partitioning of organic aerosols and oxidation degradation of hopanes. Environmental Pollution, 2021, 291, 118131.	7.5	7
191	When aerosol sulfate goes up, so does oxalate: implication for the formation mechanisms of oxalate. Environmental Science & Technology, 2005, 39, 128-33.	10.0	7
192	Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong. Atmospheric Environment, 2017, 166, 110-119.	4.1	6
193	Incorporating hopane degradation into chemical mass balance model: Improving accuracy of vehicular source contribution estimation. Atmospheric Environment, 2019, 210, 211-219.	4.1	6
194	Estimation of Aromatic Secondary Organic Aerosol Using a Molecular Tracer—A Chemical Transport Model Assessment. Environmental Science & Technology, 2021, 55, 12882-12892.	10.0	6
195	Modeling Secondary Organic Aerosol Tracers and Tracer-to-SOA Ratios for Monoterpenes and Sesquiterpenes Using a Chemical Transport Model. Environmental Science & Technology, 2022, 56, 804-813.	10.0	6
196	Decay Kinetics and Absorption Changes of Methoxyphenols and Nitrophenols during Nitrate-Mediated Aqueous Photochemical Oxidation at 254 and 313 nm. ACS Earth and Space Chemistry, 2022, 6, 1115-1125.	2.7	6
197	Characterization of Seasonal Difference of HULIS-C Sources from Water Soluble PM2.5 in Seoul, Korea: Probing Secondary Processes. Aerosol and Air Quality Research, 2021, 21, 200233.	2.1	5
198	Polyurethane-Based Face Mask as a Sampling Device for Environmental Tobacco Smoke. Analytical Chemistry, 2021, 93, 13912-13918.	6.5	5

JIAN ZHEN YU

#	Article	IF	CITATIONS
199	Assessment of oxidative potential by hydrophilic and hydrophobic fractions of water-soluble PM2.5 and their mixture effects. Environmental Pollution, 2021, 275, 116616.	7.5	4
200	Temporal Variations and Characteristics of the Carbonaceous Species in PM2.5 Measured at Anmyeon Island, a Background Site in Korea. Asian Journal of Atmospheric Environment, 2020, 14, 35-46.	1.1	4
201	An interfacial role for NO2. Nature Chemistry, 2021, 13, 1158-1160.	13.6	4
202	Online measurement of aerosol inorganic and organic nitrogen based on thermal evolution and chemiluminescent detection. Atmospheric Environment, 2022, 271, 118905.	4.1	4
203	Chemical transformation of <i>α</i> -pinene-derived organosulfate via heterogeneous OH oxidation: implications for sources and environmental fates of atmospheric organosulfates. Atmospheric Chemistry and Physics, 2022, 22, 5685-5700.	4.9	4
204	Source apportionment of fine secondary inorganic aerosol over the Pearl River Delta region using a hybrid method. Atmospheric Pollution Research, 2021, 12, 101061.	3.8	3
205	The Observation and Characterisation of Fluorescent Bioaerosols Using Real-Time UV-LIF Spectrometry in Hong Kong from June to November 2018. Atmosphere, 2020, 11, 944.	2.3	2
206	Particulate matter pollution research in the Yangtze River Delta: Observations, processes, modeling and health effects. Atmospheric Environment, 2015, 123, 285-287.	4.1	1
207	Editorial: mass spectrometric approaches for chemical characterisation of atmospheric aerosols. Environmental Chemistry, 2012, 9, i.	1.5	0
208	General discussion: Urban air quality; Meteorological influences and air quality trends. Faraday Discussions, 2021, 226, 191-206.	3.2	0
209	Foreword. Forty years of conversations in tropospheric chemistry and public health: the legacies of Harvey E. Jeffries and Richard M. Kamens at the University of North Carolina at Chapel Hill. Environmental Chemistry, 2013, 10, i.	1.5	0
210	Chemical Transformation of a Long-Chain Alkyl Organosulfate via Heterogeneous OH Oxidation: A Case Study of Sodium Dodecyl Sulfate. Environmental Science Atmospheres, 0, , .	2.4	0