Gan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5346433/publications.pdf Version: 2024-02-01

CANLU

#	Article	IF	CITATIONS
1	Heterobifunctional PEC-grafted black phosphorus quantum dots: "Three-in-One―nano-platforms for mitochondria-targeted photothermal cancer therapy. Asian Journal of Pharmaceutical Sciences, 2021, 16, 222-235.	9.1	22
2	PD-L1 cellular nanovesicles carrying rapamycin inhibit alloimmune responses in transplantation. Biomaterials Science, 2021, 9, 1246-1255.	5.4	9
3	Biomimetic Black Phosphorus Nanosheet-Based Drug Delivery System for Targeted Photothermal-Chemo Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 707208.	4.1	8
4	Regulation of Stem Cell Differentiation by Inorganic Nanomaterials: Recent Advances in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2021, 9, 721581.	4.1	5
5	Mesenchymal stem cells transporting black phosphorus-based biocompatible nanospheres: Active trojan horse for enhanced photothermal cancer therapy. Chemical Engineering Journal, 2020, 385, 123942.	12.7	44
6	Docetaxel-Loaded PAMAM-Based Poly (γ-benzyl-L-glutamate)–b- D -α - Tocopheryl Polyethylene Glycol 1000 Succinate Nanoparticles in Human Breast Cancer And Human Cervical Cancer therapy. Journal of Microencapsulation, 2019, 36, 1-33.	2.8	9
7	Polydopamine-Based "Four-in-One―Versatile Nanoplatforms for Targeted Dual Chemo and Photothermal Synergistic Cancer Therapy. Pharmaceutics, 2019, 11, 507.	4.5	36
8	Folic Acid-Functionalized Black Phosphorus Quantum Dots for Targeted Chemo-Photothermal Combination Cancer Therapy. Pharmaceutics, 2019, 11, 242.	4.5	53
9	Black phosphorus nanosheets-based stable drug delivery system via drug-self-stabilization for combined photothermal and chemo cancer therapy. Chemical Engineering Journal, 2019, 375, 121917.	12.7	91
10	A multifunctional nanoplatform for cancer chemo-photothermal synergistic therapy and overcoming multidrug resistance. Biomaterials Science, 2018, 6, 1084-1098.	5.4	106
11	The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery. Drug Delivery, 2018, 25, 985-994.	5.7	13
12	Self-controlled release of Oxaliplatin prodrug from d-α-tocopheryl polyethylene glycol 1000 succinate (TPCS) functionalized mesoporous silica nanoparticles for cancer therapy. Journal of Colloid and Interface Science, 2018, 525, 1-10.	9.4	67
13	Phosphorylcholine-Based Stealthy Nanocapsules Decorating TPGS for Combatting Multi-Drug-Resistant Cancer. ACS Biomaterials Science and Engineering, 2018, 4, 1679-1686.	5.2	7
14	An Intelligent Nanoscale Insulin Delivery System. Molecules, 2018, 23, 2945.	3.8	4
15	DACHPt-Loaded Nanoparticles Self-assembled from Biodegradable Dendritic Copolymer Polyglutamic Acid-b-D-α-Tocopheryl Polyethylene Glycol 1000 Succinate for Multidrug Resistant Lung Cancer Therapy. Frontiers in Pharmacology, 2018, 9, 119.	3.5	15
16	Polydopamineâ€Modified Black Phosphorous Nanocapsule with Enhanced Stability and Photothermal Performance for Tumor Multimodal Treatments. Advanced Science, 2018, 5, 1800510.	11.2	460
17	A Drug‣elfâ€Gated Mesoporous Antitumor Nanoplatform Based on pH‣ensitive Dynamic Covalent Bond. Advanced Functional Materials, 2017, 27, 1605985.	14.9	255
18	pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 18462-18473.	8.0	375

Gan Liu

#	Article	IF	CITATIONS
19	TPGSâ€Functionalized Polydopamineâ€Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance. Small, 2017, 13, 1700623.	10.0	218
20	Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management. Journal of Controlled Release, 2017, 255, 54-61.	9.9	22
21	DACHPt-Loaded Unimolecular Micelles Based on Hydrophilic Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Interfaces, 2017, 9, 112-119.	8.0	42
22	A drug-self-gated and tumor microenvironment-responsive mesoporous silica vehicle: "four-in-one― versatile nanomedicine for targeted multidrug-resistant cancer therapy. Nanoscale, 2017, 9, 17063-17073.	5.6	66
23	A Multifunctional Nanoplatform against Multidrug Resistant Cancer: Merging the Best of Targeted Chemo/Gene/Photothermal Therapy. Advanced Functional Materials, 2017, 27, 1704135.	14.9	260
24	Folic acid-targeted polydopamine-based surface modification of mesoporous silica nanoparticles as delivery vehicles for cancer therapy. Journal of Controlled Release, 2017, 259, e132-e133.	9.9	9
25	Polydopamine-based surface modification of copolymeric nanoparticles as a targeted drug delivery system for cancer therapy. Journal of Controlled Release, 2017, 259, e150-e151.	9.9	7
26	Cancer Therapy: TPGSâ€Functionalized Polydopamineâ€Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance (Small 29/2017). Small, 2017, 13, .	10.0	0
27	Co-delivery of docetaxel and bortezomib based on a targeting nanoplatform for enhancing cancer chemotherapy effects. Drug Delivery, 2017, 24, 1124-1138.	5.7	48
28	Cancer Therapy: A Multifunctional Nanoplatform against Multidrug Resistant Cancer: Merging the Best of Targeted Chemo/Gene/Photothermal Therapy (Adv. Funct. Mater. 45/2017). Advanced Functional Materials, 2017, 27, .	14.9	3
29	Investigation and intervention of autophagy to guide cancer treatment with nanogels. Nanoscale, 2017, 9, 150-163.	5.6	35
30	Phosphorylcholine-based stealthy nanocapsules enabling tumor microenvironment-responsive doxorubicin release for tumor suppression. Theranostics, 2017, 7, 1192-1203.	10.0	52
31	Combining Systemic and Intracellular Delivery of Cytochrome C to Tumors by a Protein Nanocapsule with Tumor-Specific Cleavable PEG. Journal of Biomedical Nanotechnology, 2017, 13, 1009-1017.	1.1	5
32	Intracellular Trafficking Network of Protein Nanocapsules: Endocytosis, Exocytosis and Autophagy. Theranostics, 2016, 6, 2099-2113.	10.0	67
33	Robust aptamer–polydopamine-functionalized M-PLGA–TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy. International Journal of Nanomedicine, 2016, 11, 2953.	6.7	40
34	Polydopamine-Based Surface Modification of Novel Nanoparticle-Aptamer Bioconjugates for <i> In Vivo</i> Breast Cancer Targeting and Enhanced Therapeutic Effects. Theranostics, 2016, 6, 470-484.	10.0	184
35	Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Research, 2016, 9, 2424-2432.	10.4	51
36	Iron Oxide Nanoparticles Induce Autophagosome Accumulation through Multiple Mechanisms: Lysosome Impairment, Mitochondrial Damage, and ER Stress. Molecular Pharmaceutics, 2016, 13, 2578-2587.	4.6	112

Gan Liu

#	Article	IF	CITATIONS
37	Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Research, 2016, 9, 1022-1031.	10.4	77
38	Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. Journal of Colloid and Interface Science, 2016, 463, 279-287.	9.4	205
39	Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomaterialia, 2016, 30, 144-154.	8.3	243
40	Pharmaceutical Nanotechnology: Blended Nanoparticle System Based on Miscible Structurally Similar Polymers: A Safe, Simple, Targeted, and Surprisingly High Efficiency Vehicle for Cancer Therapy (Adv.) Tj ETQq0 0 () 7 g8T /Ov	e s lock 10 Tf
41	Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. International Journal of Nanomedicine, 2015, 10, 2461.	6.7	46
42	DTX-loaded star-shaped TAPP-PLA-b-TPCS nanoparticles for cancer chemical and photodynamic combination therapy. RSC Advances, 2015, 5, 50617-50627.	3.6	31
43	Blended Nanoparticle System Based on Miscible Structurally Similar Polymers: A Safe, Simple, Targeted, and Surprisingly High Efficiency Vehicle for Cancer Therapy. Advanced Healthcare Materials, 2015, 4, 1203-1214.	7.6	67
44	Novel Simvastatin-Loaded Nanoparticles Based on Cholic Acid-Core Star-Shaped PLGA for Breast Cancer Treatment. Journal of Biomedical Nanotechnology, 2015, 11, 1247-1260.	1.1	39
45	Porphine functionalized nanoparticles of star-shaped poly(ε-caprolactone)-b-D-α-tocopheryl polyethylene glycol 1000 succinate biodegradable copolymer for chemophotodynamic therapy on cervical cancer. Acta Biomaterialia, 2015, 26, 145-158.	8.3	34
46	pH/Sugar Dual Responsive Core-Cross-Linked PIC Micelles for Enhanced Intracellular Protein Delivery. Biomacromolecules, 2013, 14, 3434-3443.	5.4	103
47	Glucose-responsive complex micelles for self-regulated release of insulin under physiological conditions. Soft Matter, 2013, 9, 8589.	2.7	64
48	A glucose-responsive complex polymeric micelle enabling repeated on–off release and insulin protection. Soft Matter, 2013, 9, 1636-1644.	2.7	87
49	Phenylboronic Acid-Based Complex Micelles with Enhanced Glucose-Responsiveness at Physiological pH by Complexation with Glycopolymer. Biomacromolecules, 2012, 13, 3409-3417.	5.4	118
50	Synthesis of Fe3O4@SiO2@polymer nanoparticles for controlled drug release. Science China Chemistry, 2010, 53, 514-518.	8.2	28
51	Effect of Coordination on the Glucoseâ€Responsiveness of PECâ€ <i>b</i> â€(PAAâ€ <i>co</i> â€PAAPBA) Micelles. Macromolecular Rapid Communications, 2010, 31, 1628-1634.	3.9	55
52	Glucose-Responsive Micelles from Self-Assembly of Poly(ethylene glycol)- <i>b</i> -Poly(acrylic) Tj ETQq0 0 0 rgBT /	Overlock	10 Tf 50 147 133

52

4

25, 12522-12528.