Gan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5346433/publications.pdf

Version: 2024-02-01

126907 161849 4,140 52 33 54 citations h-index g-index papers 56 56 56 5667 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Polydopamineâ€Modified Black Phosphorous Nanocapsule with Enhanced Stability and Photothermal Performance for Tumor Multimodal Treatments. Advanced Science, 2018, 5, 1800510.	11.2	460
2	pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 18462-18473.	8.0	375
3	A Multifunctional Nanoplatform against Multidrug Resistant Cancer: Merging the Best of Targeted Chemo/Gene/Photothermal Therapy. Advanced Functional Materials, 2017, 27, 1704135.	14.9	260
4	A Drugâ€Selfâ€Cated Mesoporous Antitumor Nanoplatform Based on pHâ€Sensitive Dynamic Covalent Bond. Advanced Functional Materials, 2017, 27, 1605985.	14.9	255
5	Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomaterialia, 2016, 30, 144-154.	8.3	243
6	TPGSâ€Functionalized Polydopamineâ€Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance. Small, 2017, 13, 1700623.	10.0	218
7	Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. Journal of Colloid and Interface Science, 2016, 463, 279-287.	9.4	205
8	Polydopamine-Based Surface Modification of Novel Nanoparticle-Aptamer Bioconjugates for <i> In Vivo </i> Breast Cancer Targeting and Enhanced Therapeutic Effects. Theranostics, 2016, 6, 470-484.	10.0	184
9	Glucose-Responsive Micelles from Self-Assembly of Poly(ethylene glycol)- <i>b</i> -Poly(acrylic) Tj ETQq1 1 0.78431 25, 12522-12528.	14 rgBT /O 3.5	verlock 10 T 133
10	Phenylboronic Acid-Based Complex Micelles with Enhanced Glucose-Responsiveness at Physiological pH by Complexation with Glycopolymer. Biomacromolecules, 2012, 13, 3409-3417.	5.4	118
11	Iron Oxide Nanoparticles Induce Autophagosome Accumulation through Multiple Mechanisms: Lysosome Impairment, Mitochondrial Damage, and ER Stress. Molecular Pharmaceutics, 2016, 13, 2578-2587.	4.6	112
12	A multifunctional nanoplatform for cancer chemo-photothermal synergistic therapy and overcoming multidrug resistance. Biomaterials Science, 2018, 6, 1084-1098.	5.4	106
13	pH/Sugar Dual Responsive Core-Cross-Linked PIC Micelles for Enhanced Intracellular Protein Delivery. Biomacromolecules, 2013, 14, 3434-3443.	5. 4	103
14	Black phosphorus nanosheets-based stable drug delivery system via drug-self-stabilization for combined photothermal and chemo cancer therapy. Chemical Engineering Journal, 2019, 375, 121917.	12.7	91
15	A glucose-responsive complex polymeric micelle enabling repeated on–off release and insulin protection. Soft Matter, 2013, 9, 1636-1644.	2.7	87
16	Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Research, 2016, 9, 1022-1031.	10.4	77
17	Blended Nanoparticle System Based on Miscible Structurally Similar Polymers: A Safe, Simple, Targeted, and Surprisingly High Efficiency Vehicle for Cancer Therapy. Advanced Healthcare Materials, 2015, 4, 1203-1214.	7.6	67
18	Intracellular Trafficking Network of Protein Nanocapsules: Endocytosis, Exocytosis and Autophagy. Theranostics, 2016, 6, 2099-2113.	10.0	67

#	Article	IF	CITATIONS
19	Self-controlled release of Oxaliplatin prodrug from d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) functionalized mesoporous silica nanoparticles for cancer therapy. Journal of Colloid and Interface Science, 2018, 525, 1-10.	9.4	67
20	A drug-self-gated and tumor microenvironment-responsive mesoporous silica vehicle: "four-in-one― versatile nanomedicine for targeted multidrug-resistant cancer therapy. Nanoscale, 2017, 9, 17063-17073.	5. 6	66
21	Glucose-responsive complex micelles for self-regulated release of insulin under physiological conditions. Soft Matter, 2013, 9, 8589.	2.7	64
22	Effect of Coordination on the Glucoseâ€Responsiveness of PEGâ€∢i>b⟨li>â€(PAAâ€∢i>co⟨li>â€PAAPBA) Micelles. Macromolecular Rapid Communications, 2010, 31, 1628-1634.	3.9	55
23	Folic Acid-Functionalized Black Phosphorus Quantum Dots for Targeted Chemo-Photothermal Combination Cancer Therapy. Pharmaceutics, 2019, 11, 242.	4.5	53
24	Phosphorylcholine-based stealthy nanocapsules enabling tumor microenvironment-responsive doxorubicin release for tumor suppression. Theranostics, 2017, 7, 1192-1203.	10.0	52
25	Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Research, 2016, 9, 2424-2432.	10.4	51
26	Co-delivery of docetaxel and bortezomib based on a targeting nanoplatform for enhancing cancer chemotherapy effects. Drug Delivery, 2017, 24, 1124-1138.	5.7	48
27	Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. International Journal of Nanomedicine, 2015, 10, 2461.	6.7	46
28	Mesenchymal stem cells transporting black phosphorus-based biocompatible nanospheres: Active trojan horse for enhanced photothermal cancer therapy. Chemical Engineering Journal, 2020, 385, 123942.	12.7	44
29	DACHPt-Loaded Unimolecular Micelles Based on Hydrophilic Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Cancer. ACS Applied Materials & Dendritic Block Copolymers for Enhanced Therapy of Cancer. ACS Applied Materials & Dendritic	8.0	42
30	Robust aptamer–polydopamine-functionalized M-PLGA–TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy. International Journal of Nanomedicine, 2016, 11, 2953.	6.7	40
31	Novel Simvastatin-Loaded Nanoparticles Based on Cholic Acid-Core Star-Shaped PLGA for Breast Cancer Treatment. Journal of Biomedical Nanotechnology, 2015, 11, 1247-1260.	1.1	39
32	Polydopamine-Based "Four-in-One―Versatile Nanoplatforms for Targeted Dual Chemo and Photothermal Synergistic Cancer Therapy. Pharmaceutics, 2019, 11, 507.	4.5	36
33	Investigation and intervention of autophagy to guide cancer treatment with nanogels. Nanoscale, 2017, 9, 150-163.	5.6	35
34	Porphine functionalized nanoparticles of star-shaped poly(ε-caprolactone)-b-D-α-tocopheryl polyethylene glycol 1000 succinate biodegradable copolymer for chemophotodynamic therapy on cervical cancer. Acta Biomaterialia, 2015, 26, 145-158.	8.3	34
35	DTX-loaded star-shaped TAPP-PLA-b-TPGS nanoparticles for cancer chemical and photodynamic combination therapy. RSC Advances, 2015, 5, 50617-50627.	3.6	31
36	Synthesis of Fe3O4@SiO2@polymer nanoparticles for controlled drug release. Science China Chemistry, 2010, 53, 514-518.	8.2	28

#	Article	IF	CITATIONS
37	Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management. Journal of Controlled Release, 2017, 255, 54-61.	9.9	22
38	Heterobifunctional PEC-grafted black phosphorus quantum dots: "Three-in-One―nano-platforms for mitochondria-targeted photothermal cancer therapy. Asian Journal of Pharmaceutical Sciences, 2021, 16, 222-235.	9.1	22
39	DACHPt-Loaded Nanoparticles Self-assembled from Biodegradable Dendritic Copolymer Polyglutamic Acid-b-D-α-Tocopheryl Polyethylene Glycol 1000 Succinate for Multidrug Resistant Lung Cancer Therapy. Frontiers in Pharmacology, 2018, 9, 119.	3.5	15
40	The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery. Drug Delivery, 2018, 25, 985-994.	5.7	13
41	Folic acid-targeted polydopamine-based surface modification of mesoporous silica nanoparticles as delivery vehicles for cancer therapy. Journal of Controlled Release, 2017, 259, e132-e133.	9.9	9
42	Docetaxel-Loaded PAMAM-Based Poly (γ-benzyl-L-glutamate)–b- D -α - Tocopheryl Polyethylene Glycol 1000 Succinate Nanoparticles in Human Breast Cancer And Human Cervical Cancer therapy. Journal of Microencapsulation, 2019, 36, 1-33.	2.8	9
43	PD-L1 cellular nanovesicles carrying rapamycin inhibit alloimmune responses in transplantation. Biomaterials Science, 2021, 9, 1246-1255.	5.4	9
44	Biomimetic Black Phosphorus Nanosheet-Based Drug Delivery System for Targeted Photothermal-Chemo Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 707208.	4.1	8
45	Polydopamine-based surface modification of copolymeric nanoparticles as a targeted drug delivery system for cancer therapy. Journal of Controlled Release, 2017, 259, e150-e151.	9.9	7
46	Phosphorylcholine-Based Stealthy Nanocapsules Decorating TPGS for Combatting Multi-Drug-Resistant Cancer. ACS Biomaterials Science and Engineering, 2018, 4, 1679-1686.	5.2	7
47	Pharmaceutical Nanotechnology: Blended Nanoparticle System Based on Miscible Structurally Similar Polymers: A Safe, Simple, Targeted, and Surprisingly High Efficiency Vehicle for Cancer Therapy (Adv.) Tj ETQq1 1	0 .7.8 4314	4 rgBT /Overl
48	Regulation of Stem Cell Differentiation by Inorganic Nanomaterials: Recent Advances in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2021, 9, 721581.	4.1	5
49	Combining Systemic and Intracellular Delivery of Cytochrome C to Tumors by a Protein Nanocapsule with Tumor-Specific Cleavable PEG. Journal of Biomedical Nanotechnology, 2017, 13, 1009-1017.	1.1	5
50	An Intelligent Nanoscale Insulin Delivery System. Molecules, 2018, 23, 2945.	3.8	4
51	Cancer Therapy: A Multifunctional Nanoplatform against Multidrug Resistant Cancer: Merging the Best of Targeted Chemo/Gene/Photothermal Therapy (Adv. Funct. Mater. 45/2017). Advanced Functional Materials, 2017, 27, .	14.9	3
52	Cancer Therapy: TPGSâ€Functionalized Polydopamineâ€Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance (Small 29/2017). Small, 2017, 13, .	10.0	0