Daniel M Sussman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5346202/publications.pdf Version: 2024-02-01

DANIEL M SUSSMAN

#	Article	IF	CITATIONS
1	Non-monotonic fluidization generated by fluctuating edge tensions in confluent tissues. Soft Matter, 2022, 18, 2168-2175.	2.7	7
2	Hierarchical structure of the energy landscape in the Voronoi model of dense tissue. Physical Review Research, 2022, 4, .	3.6	3
3	Quantifying the link between local structure and cellular rearrangements using information in models of biological tissues. Soft Matter, 2021, 17, 10242-10253.	2.7	12
4	Cell and Nucleus Shape as an Indicator of Tissue Fluidity in Carcinoma. Physical Review X, 2021, 11, .	8.9	46
5	Cell cycle–dependent active stress drives epithelia remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
6	Small-scale demixing in confluent biological tissues. Soft Matter, 2020, 16, 3325-3337.	2.7	34
7	Interplay of curvature and rigidity in shape-based models of confluent tissue. Physical Review Research, 2020, 2, .	3.6	16
8	Fast, Scalable, and Interactive Software for Landau-de Gennes Numerical Modeling of Nematic Topological Defects. Frontiers in Physics, 2019, 7, .	2.1	20
9	Glassy dynamics in models of confluent tissue with mitosis and apoptosis. Soft Matter, 2019, 15, 9133-9149.	2.7	38
10	No unjamming transition in a Voronoi model of biological tissue. Soft Matter, 2018, 14, 3397-3403.	2.7	41
11	Soft yet Sharp Interfaces in a Vertex Model of Confluent Tissue. Physical Review Letters, 2018, 120, 058001.	7.8	52
12	Anomalous glassy dynamics in simple models of dense biological tissue. Europhysics Letters, 2018, 121, 36001.	2.0	49
13	Curvature-dependent tension and tangential flows at the interface of motility-induced phases. Soft Matter, 2018, 14, 7435-7445.	2.7	40
14	Reply to the â€~Comment on "Spatial structure of states of self stress in jammed systemsâ€â€™ by E. Lerner, Soft Matter, 2017, 13 , DOI: 10.1039/c6sm01111j. Soft Matter, 2017, 13, 1532-1533.	2.7	1
15	cellGPU: Massively parallel simulations of dynamic vertex models. Computer Physics Communications, 2017, 219, 400-406.	7.5	65
16	Disconnecting structure and dynamics in glassy thin films. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10601-10605.	7.1	66
17	Spatial structure of states of self stress in jammed systems. Soft Matter, 2016, 12, 3982-3990.	2.7	19
18	Spatial distribution of entanglements in thin free-standing films. Physical Review E, 2016, 94, 012503.	2.1	21

DANIEL M SUSSMAN

#	Article	IF	CITATIONS
19	Additive lattice kirigami. Science Advances, 2016, 2, e1601258.	10.3	47
20	Topological boundary modes in jammed matter. Soft Matter, 2016, 12, 6079-6087.	2.7	28
21	Strain fluctuations and elastic moduli in disordered solids. Physical Review E, 2015, 92, 022307.	2.1	6
22	Algorithmic lattice kirigami: A route to pluripotent materials. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7449-7453.	7.1	119
23	Disordered surface vibrations in jammed sphere packings. Soft Matter, 2015, 11, 2745-2751.	2.7	7
24	Vibrational and structural signatures of the crossover between dense glassy and sparse gel-like attractive colloidal packings. Physical Review E, 2014, 90, 062305.	2.1	12
25	States that "look the same―with respect to every basis in a mutually unbiased set. Journal of Mathematical Physics, 2014, 55, 122206.	1.1	10
26	Geometry of the Cholesteric Phase. Physical Review X, 2014, 4, .	8.9	18
27	Making the Cut: Lattice <i>Kirigami</i> Rules. Physical Review Letters, 2014, 113, 245502.	7.8	123
28	Entangled Rigid Macromolecules under Continuous Startup Shear Deformation: Consequences of a Microscopically Anharmonic Confining Tube. Macromolecules, 2013, 46, 5684-5693.	4.8	33
29	Entangled polymer chain melts: Orientation and deformation dependent tube confinement and interchain entanglement elasticity. Journal of Chemical Physics. 2013, 139, 234904.	3.0	26