
Chun Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5345892/publications.pdf Version: 2024-02-01

Сним Сио

#	Article	IF	CITATIONS
1	A Study on High Strength, High Plasticity, Non-Heat Treated Die-Cast Aluminum Alloy. Materials, 2022, 15, 295.	2.9	2
2	Microstructure and performances for 15-5 PH stainless steel fabricated through the wire-arc additive manufacturing technology. Materials Technology, 2021, 36, 831-842.	3.0	14
3	Microstructural and intergranular corrosion properties of Inconel 625 superalloys fabricated using wire arc additive manufacturing. Materials Research Express, 2021, 8, 035103.	1.6	8
4	Microstructure, mechanical, and corrosion resistance of copper nickel alloy fabricated by wire-arc additive manufacturing. MRS Communications, 2021, 11, 910-916.	1.8	9
5	Microstructure and Performances for Wear-Resistant Steel through the WAAM Technology. Advances in Materials Science and Engineering, 2021, 2021, 1-11.	1.8	0
6	Microstructure and Properties of a 2.25Cr1Mo0.25V Heat-Resistant Steel Produced by Wire Arc Additive Manufacturing. Advances in Materials Science and Engineering, 2020, 2020, 1-9.	1.8	4
7	High-strength wire + arc additive manufactured steel. International Journal of Materials Research, 2020, 111, 325-331.	0.3	6
8	High-strength wire + arc additive manufactured steel. International Journal of Materials Research, 2020, 111, 325-331.	0.3	2
9	Microstructure and Corrosion Behavior of Laser Surface Alloyed Magnesium Alloys with TiO2-CeO2. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55, 729-734.	1.1	3
10	Influence of composition and microstructure on the tribological property of SPS sintered MCrAlY alloys at elevated temperatures. Journal of Alloys and Compounds, 2018, 740, 790-800.	5.5	21
11	Space tribological properties of metal matrix space lubricant coating prepared on titanium surface. Surface and Coatings Technology, 2014, 246, 40-45.	4.8	7
12	Effect of powders refinement on the tribological behavior of Ni-based composite coatings by laser cladding. Applied Surface Science, 2012, 258, 6697-6704.	6.1	31
13	Microstructure and tribological properties of laser cladding Fe-based coating on pure Ti substrate. Transactions of Nonferrous Metals Society of China, 2012, 22, 2171-2178.	4.2	38
14	Microstructure and tribological properties of Ti–Cu intermetallic compound coating. Materials & Design, 2012, 36, 482-489.	5.1	21
15	Effects of WC–Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating. Surface and Coatings Technology, 2012, 206, 2064-2071.	4.8	157
16	Preparation, microstructure and tribological behavior of laser cladding NiAl intermetallic compound coatings. Wear, 2012, 274-275, 298-305.	3.1	46
17	Microstructure and Tribological Properties of Ti ₅ Si ₃ Coating <i>In-situ</i> Synthesized on Titanium Substrate by Laser Cladding. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 970-976.	1.3	5
18	Microstructure and Tribological Properties of ZrB2-Containing Composite Coating Produced on Pure Ti Substrate by Laser Surface Alloying. Journal of Tribology, 2011, 133, .	1.9	7

Сним Guo

#	Article	IF	CITATIONS
19	Microstructure and tribological properties of TiAg intermetallic compound coating. Applied Surface Science, 2011, 257, 10692-10698.	6.1	8
20	Improvement of the Oxidation and Wear Resistance of Pure Ti by Laser-Cladding Ti3Al Coating at Elevated Temperature. Tribology Letters, 2011, 42, 151-159.	2.6	33
21	Microstructure and Tribological Properties of a HfB2-Containing Ni-Based Composite Coating Produced on a Pure Ti Substrate by Laser Cladding. Tribology Letters, 2011, 44, 187-200.	2.6	14
22	Microstructure and friction and wear behavior of laser boronizing composite coatings on titanium substrate. Applied Surface Science, 2011, 257, 4398-4405.	6.1	53
23	Microstructure and tribological properties of TiCu2Al intermetallic compound coating. Applied Surface Science, 2011, 257, 5885-5892.	6.1	5
24	High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings. Wear, 2011, 270, 492-498.	3.1	172
25	Improvement of the oxidation and wear resistance of pure Ti by laser cladding at elevated temperature. Surface and Coatings Technology, 2010, 205, 2142-2151.	4.8	58
26	Preparation, microstructure and tribological properties of Ni3Al intermetallic compound coating by laser cladding. Intermetallics, 2010, 18, 871-876.	3.9	41
27	Synthesis of nanocrystalline Ni3Al by mechanical alloying and its microstructural characterization. Journal of Alloys and Compounds, 2010, 498, 107-112.	5.5	19
28	Effect of ZrB ₂ on the Microstructure and Wear Resistance of Ni-Based Composite Coating Produced on Pure Ti by Laser Cladding. Tribology Transactions, 2010, 54, 80-86.	2.0	32
29	Comparison between the RCF Performance of TiN- and TiO ₂ -Laser Coated Ti64 Bearings. Advanced Materials Research, 0, 566, 308-312.	0.3	0