Daniel F Mcginnis

List of Publications by Citations

Source: https://exaly.com/author-pdf/5345494/daniel-f-mcginnis-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

77
papers

3,643
citations

33
h-index

59
g-index

79
ext. papers

4,154
ext. citations

5.7
avg, IF

L-index

#	Paper	IF	Citations
77	Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 7104-9	11.5	444
76	Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?. <i>Journal of Geophysical Research</i> , 2006 , 111,		364
75	Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. <i>Environmental Science & Eamp; Technology</i> , 2010 , 44, 2419-25	10.3	197
74	1300-m-high rising bubbles from mud volcanoes at 2080m in the Black Sea: Hydroacoustic characteristics and temporal variability. <i>Earth and Planetary Science Letters</i> , 2006 , 244, 1-15	5.3	189
73	Sediment trapping by dams creates methane emission hot spots. <i>Environmental Science & Environmental &</i>	10.3	180
72	Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake. <i>Limnology and Oceanography: Methods</i> , 2008 , 6, 105-118	2.6	105
71	Predicting diffused-bubble oxygen transfer rate using the discrete-bubble model. <i>Water Research</i> , 2002 , 36, 4627-35	12.5	92
70	Quantification of seep-related methane gas emissions at Tommeliten, North Sea. <i>Continental Shelf Research</i> , 2011 , 31, 867-878	2.4	91
69	Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters. <i>Limnology and Oceanography</i> , 2014 , 59, 275-284	4.8	80
68	A water column study of methane around gas flares located at the West Spitsbergen continental margin. <i>Continental Shelf Research</i> , 2014 , 72, 107-118	2.4	77
67	Interaction between a bubble plume and the near field in a stratified lake. <i>Water Resources Research</i> , 2004 , 40,	5.4	76
66	Methane Production in Oxic Lake Waters Potentially Increases Aquatic Methane Flux to Air. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 227-233	11	72
65	Size does matter: importance of large bubbles and small-scale hot spots for methane transport. <i>Environmental Science & Environmental </i>	10.3	70
64	Application of Oxygen Eddy Correlation in Aquatic Systems. <i>Journal of Atmospheric and Oceanic Technology</i> , 2010 , 27, 1533-1546	2	69
63	Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters. <i>Biogeosciences</i> , 2015 , 12, 7013-7024	4.6	67
62	Ikaite crystal distribution in winter sea ice and implications for CO₂ system dynamics. <i>Cryosphere</i> , 2013 , 7, 707-718	5.5	63
61	Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. <i>Nature Communications</i> , 2017 , 8, 1661	17.4	59

(2010-2015)

60	Enhancing surface methane fluxes from an oligotrophic lake: exploring the microbubble hypothesis. <i>Environmental Science & Environmental Science & Env</i>	10.3	56
59	Atmospheric methane flux from bubbling seeps: Spatially extrapolated quantification from a Black Sea shelf area. <i>Journal of Geophysical Research</i> , 2010 , 115,		55
58	Measurements of eddy correlation oxygen fluxes in shallow freshwaters: Towards routine applications and analysis. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	54
57	Quantification of methane emissions at abandoned gas wells in the Central North Sea. <i>Marine and Petroleum Geology</i> , 2015 , 68, 848-860	4.7	52
56	Quantifying tidally driven benthic oxygen exchange across permeable sediments: An aquatic eddy correlation study. <i>Journal of Geophysical Research: Oceans</i> , 2014 , 119, 6918-6932	3.3	49
55	Seasonal rates of benthic primary production in a Greenland fjord measured by aquatic eddy correlation. <i>Limnology and Oceanography</i> , 2014 , 59, 1555-1569	4.8	48
54	Discovery of a natural CO2 seep in the German North Sea: Implications for shallow dissolved gas and seep detection. <i>Journal of Geophysical Research</i> , 2011 , 116,		46
53	Methane seepage along the Hikurangi Margin of New Zealand: Geochemical and physical data from the water column, sea surface and atmosphere. <i>Marine Geology</i> , 2010 , 272, 170-188	3.3	44
52	Intermittent oxygen flux from the interior into the bottom boundary of lakes as observed by eddy correlation. <i>Limnology and Oceanography</i> , 2008 , 53, 1997-2006	4.8	43
51	Simple, robust eddy correlation amplifier for aquatic dissolved oxygen and hydrogen sulfide flux measurements. <i>Limnology and Oceanography: Methods</i> , 2011 , 9, 340-347	2.6	41
50	Variable sediment oxygen uptake in response to dynamic forcing 2010 , 55, 950		41
49	Variable sediment oxygen uptake in response to dynamic forcing. <i>Limnology and Oceanography</i> , 2010 , 55, 950-964	4.8	38
48	Contribution of oxic methane production to surface methane emission in lakes and its global importance. <i>Nature Communications</i> , 2019 , 10, 5497	17.4	38
47	Acoustic observations of zooplankton in lakes using a Doppler current profiler. <i>Freshwater Biology</i> , 2004 , 49, 1280-1292	3.1	37
46	Physical limitations of dissolved methane fluxes: The role of bottom-boundary layer processes. <i>Marine Geology</i> , 2010 , 272, 209-222	3.3	36
45	Sources and sinks of methane in Lake Baikal: A synthesis of measurements and modeling. <i>Limnology and Oceanography</i> , 2007 , 52, 1824-1837	4.8	35
44	Eddy-correlation measurements of benthic fluxes under complex flow conditions: Effects of coordinate transformations and averaging time scales. <i>Limnology and Oceanography: Methods</i> , 2013 , 11, 425-437	2.6	32
43	Evaluating oxygen fluxes using microprofiles from both sides of the sediment-water interface. Limnology and Oceanography: Methods, 2010, 8, 610-627	2.6	32

42	Silica retention in the Iron Gate I reservoir on the Danube River: the role of side bays as nutrient sinks. <i>River Research and Applications</i> , 2006 , 22, 441-456	2.3	31
41	Predicting oxygen transfer and water flow rate in airlift aerators. Water Research, 2002, 36, 4605-15	12.5	31
40	Aquatic eddy correlation: quantifying the artificial flux caused by stirring-sensitive O2 sensors. <i>PLoS ONE</i> , 2015 , 10, e0116564	3.7	31
39	An Assessment of the Precision and Confidence of Aquatic Eddy Correlation Measurements. <i>Journal of Atmospheric and Oceanic Technology</i> , 2015 , 32, 642-655	2	28
38	Biological- and physical-induced oxygen dynamics in melting sea ice of the Fram Strait. <i>Limnology and Oceanography</i> , 2014 , 59, 1097-1111	4.8	26
37	Response of the Black Sea methane budget to massive short-term submarine inputs of methane. <i>Biogeosciences</i> , 2011 , 8, 911-918	4.6	26
36	Influence of water column stratification and mixing patterns on the fate of methane produced in deep sediments of a small eutrophic lake. <i>Limnology and Oceanography</i> , 2019 , 64, 2114-2128	4.8	25
35	Effect of Sediment Gas Voids and Ebullition on Benthic Solute Exchange. <i>Environmental Science & Environmental Science</i>	10.3	25
34	Methanotrophic microbial communities associated with bubble plumes above gas seeps in the Black Sea. <i>Geochemistry, Geophysics, Geosystems</i> , 2006 , 7, n/a-n/a	3.6	25
33	Single bubble dissolution model The graphical user interface SiBu-GUI. <i>Environmental Modelling and Software</i> , 2009 , 24, 1012-1013	5.2	24
32	Physical controls of oxygen fluxes at pelagic and benthic oxyclines in a lake. <i>Limnology and Oceanography</i> , 2014 , 59, 1637-1650	4.8	21
31	Methane emissions from a freshwater marsh in response to experimentally simulated global warming and nitrogen enrichment. <i>Journal of Geophysical Research</i> , 2010 , 115,		21
30	Assessing benthic oxygen fluxes in oligotrophic deep sea sediments (HAUSGARTEN observatory). Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 111, 1-10	2.5	21
29	Role of gas ebullition in the methane budget of a deep subtropical lake: What can we learn from process-based modeling?. <i>Limnology and Oceanography</i> , 2017 , 62, 2674-2698	4.8	20
28	What the bubble knows: Lake methane dynamics revealed by sediment gas bubble composition. <i>Limnology and Oceanography</i> , 2019 , 64, 1526-1544	4.8	19
27	Deconstructing Methane Emissions from a Small Northern European River: Hydrodynamics and Temperature as Key Drivers. <i>Environmental Science & Environmental Science & Environm</i>	10.3	19
26	Effect of ship locking on sediment oxygen uptake in impounded rivers. <i>Water Resources Research</i> , 2012 , 48,	5.4	17
25	Noble gas anomalies related to high-intensity methane gas seeps in the Black Sea. <i>Earth and Planetary Science Letters</i> , 2008 , 265, 396-409	5.3	17

(2014-2006)

24	Effects of methane outgassing on the Black Sea atmosphere. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 5173-5182	6.8	17
23	Thermocline mixing and vertical oxygen fluxes in the stratified central North Sea. <i>Biogeosciences</i> , 2016 , 13, 1609-1620	4.6	13
22	Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.: An energetic advantage. <i>Scientific Reports</i> , 2017 , 7, 44478	4.9	12
21	Parameterization of atmosphereBurface exchange of CO₂ over sea ice. <i>Cryosphere</i> , 2014 , 8, 853-866	5.5	12
20	Bubble dynamics and oxygen transfer in a speece cone. Water Science and Technology, 1998, 37, 285-29	2 2.2	12
19	Artificially oxygenating the Swan River estuary increases dissolved oxygen concentrations in the water and at the sediment interface. <i>Ecological Engineering</i> , 2019 , 128, 112-121	3.9	11
18	Nutrient retention in the Danubeß Iron Gate reservoir. <i>Eos</i> , 2006 , 87, 385	1.5	11
17	Oxygen fluxes beneath Arctic land-fast ice and pack ice: towards estimates of ice productivity. <i>Polar Biology</i> , 2018 , 41, 2119-2134	2	7
16	Methane hydrate emergence from Lake Baikal: direct observations, modelling, and hydrate footprints in seasonal ice cover. <i>Scientific Reports</i> , 2019 , 9, 19361	4.9	6
15	Methane emission offsets carbon dioxide uptake in a small productive lake. <i>Limnology and Oceanography Letters</i> , 2020 , 5, 384-392	7.9	5
14	Bubble dynamics and oxygen transfer in a speece cone. Water Science and Technology, 1998, 37, 285	2.2	5
13	Technical Note: Drifting vs. anchored flux chambers for measuring greenhouse gas emissions from running waters		5
12	The Chaoborus pump: Migrating phantom midge larvae sustain hypolimnetic oxygen deficiency and nutrient internal loading in lakes. <i>Water Research</i> , 2017 , 122, 36-41	12.5	4
11	The role of internal feedbacks in shifting deep lake mixing regimes under a warming climate. <i>Freshwater Biology</i> , 2021 , 66, 1021-1035	3.1	4
10	The phantom midge menace: Migratory Chaoborus larvae maintain poor ecosystem state in eutrophic inland waters. <i>Water Research</i> , 2018 , 139, 30-37	12.5	3
9	Reply to POxic methanogenesis is only a minor source of lake-wide diffusive CH emissions from lakes RNature Communications, 2021, 12, 1205	17.4	3
8	Determining Near-Bottom Fluxes of Passive Tracers in Aquatic Environments. <i>Geophysical Research Letters</i> , 2018 , 45, 2716-2725	4.9	2
7	Preliminary Experiments and Modelling of the Fate of CO2 Bubbles in the Water Column Near Panarea Island (Italy). <i>Energy Procedia</i> , 2014 , 59, 397-403	2.3	2

6	Thermocline mixing and vertical oxygen fluxes in the stratified central North Sea		2	
5	Response of the Black Sea methane budget to massive short-term submarine inputs of methane		2	
4	Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer. <i>Limnology and Oceanography</i> , 2021 , 66, 4314	4.8	2	
3	Thermal small steps staircase and layer migration in the Atlantis II Deep, Red Sea. <i>Arabian Journal of Geosciences</i> , 2016 , 9, 1	1.8	1	
2	Parameterization of atmosphereBurface exchange of CO ₂ over sea ice		1	
1	Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems. Limnology and Oceanography,	4.8	1	