
Tobias Bast

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5345442/publications.pdf Version: 2024-02-01

TORIAS RAST

#	Article	IF	CITATIONS
1	Regional dissociations within the hippocampus—memory and anxiety. Neuroscience and Biobehavioral Reviews, 2004, 28, 273-283.	6.1	1,239
2	Hippocampal modulation of sensorimotor processes. Progress in Neurobiology, 2003, 70, 319-345.	5.7	252
3	The ventral hippocampus and fear conditioning in rats. Experimental Brain Research, 2001, 139, 39-52.	1.5	159
4	From Rapid Place Learning to Behavioral Performance: A Key Role for the Intermediate Hippocampus. PLoS Biology, 2009, 7, e1000089.	5.6	151
5	Dorsal hippocampus and classical fear conditioning to tone and context in rats: Effects of local NMDA-receptor blockade and stimulation. Hippocampus, 2003, 13, 657-675.	1.9	137
6	Distinct Contributions of Hippocampal NMDA and AMPA Receptors to Encoding and Retrieval of One-Trial Place Memory. Journal of Neuroscience, 2005, 25, 5845-5856.	3.6	133
7	Toward an Integrative Perspective on Hippocampal Function: From the Rapid Encoding of Experience to Adaptive Behavior. Reviews in the Neurosciences, 2007, 18, 253-81.	2.9	125
8	The ventral hippocampus and fear conditioning in rats: different anterograde amnesias of fear after infusion of N-methyl-?-aspartate or its noncompetitive antagonist MK-801 into the ventral hippocampus. Behavioural Brain Research, 2001, 126, 159-174.	2.2	124
9	Too Little and Too Much: Hypoactivation and Disinhibition of Medial Prefrontal Cortex Cause Attentional Deficits. Journal of Neuroscience, 2014, 34, 7931-7946.	3.6	96
10	Hyperactivity, decreased startle reactivity, and disrupted prepulse inhibition following disinhibition of the rat ventral hippocampus by the GABAA receptor antagonist picrotoxin. Psychopharmacology, 2001, 156, 225-233.	3.1	71
11	Effects of MK801 and neuroleptics on prepulse inhibition: re-examination in two strains of rats. Pharmacology Biochemistry and Behavior, 2000, 67, 647-658.	2.9	68
12	Temporary inhibition of dorsal or ventral hippocampus by muscimol: Distinct effects on measures of innate anxiety on the elevated plus maze, but similar disruption of contextual fear conditioning. Behavioural Brain Research, 2014, 262, 47-56.	2.2	67
13	Significance of Dopamine Transmission in the Rat Medial Prefrontal Cortex for Conditioned Fear. Cerebral Cortex, 2003, 13, 371-380.	2.9	66
14	Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition. British Journal of Pharmacology, 2017, 174, 3211-3225.	5.4	66
15	The hippocampal learning-behavior translation and the functional significance of hippocampal dysfunction in schizophrenia. Current Opinion in Neurobiology, 2011, 21, 492-501.	4.2	65
16	Hyperactivity and disruption of prepulse inhibition induced by N-methyl-d-aspartate stimulation of the ventral hippocampus and the effects of pretreatment with haloperidol and clozapine. Neuroscience, 2001, 103, 325-335.	2.3	57
17	Prepulse inhibition in rats with temporary inhibition/inactivation of ventral or dorsal hippocampus. Pharmacology Biochemistry and Behavior, 2002, 73, 929-940.	2.9	50
18	Effects of hippocampal N-methyl-[D]-aspartate infusion on locomotor activity and prepulse inhibition: Differences between the dorsal and ventral hippocampus Behavioral Neuroscience, 2002, 116, 72-84.	1.2	50

TOBIAS BAST

#	Article	IF	CITATIONS
19	Dopamine D1-like receptor signalling in the hippocampus and amygdala modulates the acquisition of contextual fear conditioning. Psychopharmacology, 2015, 232, 2619-2629.	3.1	50
20	Activation of dopaminergic neurotransmission in the medial prefrontal cortex by N-methyl-d-aspartate stimulation of the ventral hippocampus in rats. Neuroscience, 2005, 132, 219-232.	2.3	45
21	Hippocampus and classical fear conditioning. Hippocampus, 2001, 11, 828-831.	1.9	38
22	Dopaminergic modulation of hippocampus-dependent learning: Blockade of hippocampal D1-class receptors during learning impairs 1-trial place memory at a 30-min retention delay. Neuropharmacology, 2012, 63, 710-718.	4.1	36
23	Manganese-enhanced magnetic resonance imaging (MEMRI) of rat brain after systemic administration of MnCl2: Hippocampal signal enhancement without disruption of hippocampus-dependent behavior. Behavioural Brain Research, 2011, 216, 293-300.	2.2	35
24	Hippocampal Neural Disinhibition Causes Attentional and Memory Deficits. Cerebral Cortex, 2017, 27, 4447-4462.	2.9	35
25	Microinfusion of the non-competitive N-methyl-d-aspartate receptor antagonist MK-801 (dizocilpine) into the dorsal hippocampus of Wistar rats does not affect latent inhibition and prepulse inhibition, but increases startle reaction and locomotor activity. Neuroscience, 2000, 101, 589-599.	2.3	33
26	Hippocampus and two-way active avoidance conditioning: Contrasting effects of cytotoxic lesion and temporary inactivation. Hippocampus, 2015, 25, 1517-1531.	1.9	31
27	Effects of hippocampal N-methyl-[D]-aspartate infusion on locomotor activity and prepulse inhibition: Differences between the dorsal and ventral hippocampus Behavioral Neuroscience, 2002, 116, 72-84.	1.2	30
28	Functional aspects of dopamine metabolism in the putative prefrontal cortex analogue and striatum of pigeons (Columba livia). Journal of Comparative Neurology, 2002, 446, 58-67.	1.6	29
29	Dopamine receptor blockade in the rat medial prefrontal cortex reduces spontaneous and amphetamine-induced activity and does not affect prepulse inhibition. Behavioural Pharmacology, 2002, 13, 669-673.	1.7	24
30	Dopamine D1-like receptors in the dorsomedial prefrontal cortex regulate contextual fear conditioning. Psychopharmacology, 2019, 236, 1771-1782.	3.1	22
31	Spatial memory: behavioral determinants of persistence in the watermaze delayed matching-to-place task. Learning and Memory, 2013, 21, 767-775.	1.3	17
32	A new human delayedâ€matchingâ€ŧoâ€place test in a virtual environment reverseâ€ŧranslated from the rodent watermaze paradigm: Characterization of performance measures and sex differences. Hippocampus, 2018, 28, 796-812.	1.9	12
33	Reinforcement learning approaches to hippocampus-dependent flexible spatial navigation. Brain and Neuroscience Advances, 2021, 5, 239821282097563.	3.4	7
34	Frequency―and stateâ€dependent effects of hippocampal neural disinhibition on hippocampal local field potential oscillations in anesthetized rats. Hippocampus, 2020, 30, 1021-1043.	1.9	4
35	The association of socio-economic and psychological factors with limitations in day-to-day activity over 7Âyears in newly diagnosed osteoarthritis patients. Scientific Reports, 2022, 12, 943.	3.3	4
36	Foot and ankle Osteoarthritis and Cognitive impairment in retired UK Soccer players (FOCUS): protocol for a cross-sectional comparative study with general population controls. BMJ Open, 2022, 12, e054371.	1.9	3

Tobias Bast

#	Article	IF	CITATIONS
37	Individual differences in theta-band oscillations in a spatial memory network revealed by electroencephalography predict rapid place learning. Brain and Neuroscience Advances, 2021, 5, 239821282110027.	3.4	2
38	P.1.j.026 Cognitive deficits caused by hippocampal disinhibition: attentional and memory deficits. European Neuropsychopharmacology, 2013, 23, S296-S297.	0.7	1
39	Ratlas-LH: An MRI template of the Lister hooded rat brain with stereotaxic coordinates for neurosurgical implantations. Brain and Neuroscience Advances, 2021, 5, 239821282110363.	3.4	1
40	Hippocampal Disinhibition Reduces Contextual and Elemental Fear Conditioning While Sparing the Acquisition of Latent Inhibition. ENeuro, 2022, 9, ENEURO.0270-21.2021.	1.9	1
41	S.28.03 Schizophrenia-related behavioural deficits caused by hippocampal and prefrontal disinhibition. European Neuropsychopharmacology, 2013, 23, S153.	0.7	0
42	Cover Image, Volume 28, Issue 11. Hippocampus, 2018, 28, C1-C1.	1.9	0