Mark C Flynn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5345259/publications.pdf

Version: 2024-02-01

430874 501196 42 826 18 28 h-index citations g-index papers 42 42 42 603 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Single-Sided Deafnessâ€"Outcomes of Three Interventions for Profound Unilateral Sensorineural Hearing Loss: A Randomized Clinical Trial. Otology and Neurotology, 2020, 41, 736-744.	1.3	8
2	Clinical Outcomes of Soft Tissue Preservation Surgery With Hydroxyapatite-Coated Abutments Compared to Traditional Percutaneous Bone Conduction Hearing Implant Surgery—A Pragmatic Multi-Center Randomized Controlled Trial. Frontiers in Surgery, 2020, 7, 5.	1.4	8
3	A Multinational Cost-Consequence Analysis of a Bone Conduction Hearing Implant System—A Randomized Trial of a Conventional vs. a Less Invasive Treatment With New Abutment Technology. Frontiers in Neurology, 2020, 11, 106.	2.4	5
4	Audiological and clinical outcomes of a transcutaneous bone conduction hearing implant: Sixâ€month results from a multicentre study. Clinical Otolaryngology, 2019, 44, 144-157.	1.2	41
5	Baha Attract System: 6-month results of a multicentre, open, prospective clinical investigation. Journal of Laryngology and Otology, 2016, 130, S120-S121.	0.8	0
6	Estimating the benefit of a second bone anchored hearing implant in unilaterally implanted users with a testband. Acta Oto-Laryngologica, 2016, 136, 379-384.	0.9	3
7	Stability, Survival, and Tolerability of an Auditory Osseointegrated Implant for Bone Conduction Hearing. Otology and Neurotology, 2016, 37, 1077-1083.	1.3	28
8	Soft Tissue Integration of Hydroxyapatiteâ€Coated Abutments for Bone Conduction Implants. Clinical Implant Dentistry and Related Research, 2015, 17, e730-5.	3.7	20
9	Application and Interpretation of Resonance Frequency Analysis in Auditory Osseointegrated Implants. Otology and Neurotology, 2015, 36, 1518-1524.	1.3	26
10	Can the Hydroxyapatite-Coated Skin-Penetrating Abutment for Bone Conduction Hearing Implants Integrate with the Surrounding Skin?. Frontiers in Surgery, 2015, 2, 45.	1.4	24
11	Clinical Performance of a New Magnetic Bone Conduction Hearing Implant System. Otology and Neurotology, 2015, 36, 834-841.	1.3	79
12	Speech Understanding with a New Implant Technology: A Comparative Study with a New Nonskin Penetrating Baha System. BioMed Research International, 2014, 2014, 1-9.	1.9	65
13	Long-Term Stability, Survival, and Tolerability of a Novel Osseointegrated Implant for Bone Conduction Hearing. Otology and Neurotology, 2014, 35, 1486-1491.	1.3	36
14	Histologic Evaluation of Soft Tissue Integration of Experimental Abutments for Bone Anchored Hearing Implants Using Surgery Without Soft Tissue Reduction. Otology and Neurotology, 2012, 33, 1445-1451.	1.3	45
15	Improving the Accuracy of Baha® Fittings through Measures of Direct Bone Conduction. Clinical and Experimental Otorhinolaryngology, 2012, 5, S43.	2.1	10
16	Hearing Performance Benefits of a Programmable Power Baha $\hat{A}^{@}$ Sound Processor with a Directional Microphone for Patients with a Mixed Hearing Loss. Clinical and Experimental Otorhinolaryngology, 2012, 5, S76.	2.1	13
17	Challenges and Recent Developments in Sound Processing for Baha < sup> \hat{A}^{\otimes} < /sup>. Advances in Oto-Rhino-Laryngology, 2011, 71, 112-123.	1.6	8
18	Benefits of Low-Frequency Attenuation of Baha $\hat{A}^{@}$ in Single-Sided Sensorineural Deafness. Ear and Hearing, 2011, 32, 40-45.	2.1	36

#	Article	IF	CITATIONS
19	Benefits of directional microphones and noise reduction circuits for improving Baha [®] hearing performance. Cochlear Implants International, 2011, 12, S139-S141.	1.2	7
20	Stability, Survival, and Tolerability of a Novel Baha Implant System. Otology and Neurotology, 2011, 32, 1001-1007.	1.3	61
21	An Experimental Evaluation of a New Craniofacial Implant Using the Rabbit Tibia Model. Otology and Neurotology, 2010, 31, 840-845.	1.3	18
22	An Experimental Evaluation of a New Craniofacial Implant Using the Rabbit Tibia Model. Otology and Neurotology, 2010, 31, 832-839.	1.3	20
23	Baha for Single-Sided Sensorineural Deafness: Review and Recent Technological Innovations. Seminars in Hearing, 2010, 31, 326-349.	1.2	12
24	Baha solutions for patients with severe mixed hearing loss. Cochlear Implants International, 2009, , n/a-n/a.	1.2	0
25	Baha solutions for patients with severe mixed hearing loss. Cochlear Implants International, 2009, 10, 43-47.	1.2	15
26	Baha® for conductive, mixed, and unilateral loss. Hearing Journal, 2008, 61, 44.	0.1	0
27	The Influence of Different Speech Processor and Hearing Aid Settings on Speech Perception Outcomes in Electric Acoustic Stimulation Patients. Ear and Hearing, 2008, 29, 76-86.	2.1	45
28	Digital technology offers a better solution to feedback problems in pediatric patients. Hearing Journal, 2006, 59, 58.	0.1	0
29	Role of A-type K+ channels in spike broadening observed in soma and axon of Hermissenda type-B photoreceptors: A simulation study. Journal of Computational Neuroscience, 2006, 21, 89-99.	1.0	2
30	Clinical verification of a hearing aid with Artificial Intelligence. Hearing Journal, 2005, 58, 34-38.	0.1	4
31	Multiple-channel non-linear power hearing instruments for children with severe hearing impairment: long-term follow-up. International Journal of Audiology, 2004, 43, 479-485.	1.7	19
32	Benefits of bimodal stimulation for adults with a cochlear implant. International Congress Series, 2004, 1273, 227-230.	0.2	9
33	A computational study of the role of spike broadening in synaptic facilitation of Hermissenda. Journal of Computational Neuroscience, 2003, 15, 29-41.	1.0	9
34	Training phonological awareness skills in children with Down syndrome. Research in Developmental Disabilities, 2003, 24, 44-57.	2.2	40
35	Facilitating speech and language development in children with cochlear implants using computer technology. Cochlear Implants International, 2003, 4, 119-136.	1.2	8
36	Early phonological awareness and reading skills in children with Down syndrome. Down Syndrome Research and Practice, 2003, 8, 100-109.	0.3	33

#	Article	IF	CITATIONS
37	Effects of Background Noise and Reverberation on the Aided Speech Perception in Adults with a Severe or Severe-to-profound Hearing Impairment. Australian and New Zealand Journal of Audiology, 2003, 25, 63-73.	0.3	1
38	Developing, implementing, and evaluating a hearing screening programme in the speech-language pathology clinic setting. International Journal of Speech-Language Pathology, 2002, 4, 23-31.	0.5	0
39	Hearing and vision loss within residential care facilities â€the need for improved service delivery. Australasian Journal on Ageing, 2002, 21, 141-144.	0.9	5
40	Improving the classroom listening skills of children with Down syndrome by using sound-field amplification. Down Syndrome Research and Practice, 2002, 8, 19-24.	0.3	26
41	Speech Perception in a Communicative Context. Journal of Speech, Language, and Hearing Research, 1999, 42, 540-552.	1.6	9
42	Aided Speech Recognition Abilities of Adults With a Severe or Severe-to-Profound Hearing Loss. Journal of Speech, Language, and Hearing Research, 1998, 41, 285-299.	1.6	28