
Yvonne Nygård

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/534509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioconversion of d-xylose to d-xylonate with Kluyveromyces lactis. Metabolic Engineering, 2011, 13, 383-391.	3.6	296
2	CRISPR/Cas9 Based Genome Editing of <i>Penicillium chrysogenum</i> . ACS Synthetic Biology, 2016, 5, 754-764.	1.9	258
3	Microbial d-xylonate production. Applied Microbiology and Biotechnology, 2012, 96, 1-8.	1.7	83
4	Metabolic engineering of Saccharomyces cerevisiae for bioconversion of d-xylose to d-xylonate. Metabolic Engineering, 2012, 14, 427-436.	3.6	74
5	Low pH d-xylonate production with Pichia kudriavzevii. Bioresource Technology, 2013, 133, 555-562.	4.8	68
6	Mechanism and regulation of sorbicillin biosynthesis by <i>Penicillium chrysogenum</i> . Microbial Biotechnology, 2017, 10, 958-968.	2.0	49
7	A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6-12. Scientific Reports, 2020, 10, 14605.	1.6	43
8	The diverse role of Pdr12 in resistance to weak organic acids. Yeast, 2014, 31, 219-232.	0.8	42
9	Modular Synthetic Biology Toolkit for Filamentous Fungi. ACS Synthetic Biology, 2021, 10, 2850-2861.	1.9	35
10	Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnology Advances, 2022, 57, 107947.	6.0	29
11	Pathway for the Biosynthesis of the Pigment Chrysogine by Penicillium chrysogenum. Applied and Environmental Microbiology, 2018, 84, .	1.4	28
12	Single cell and in vivo analyses elucidate the effect of xylC lactonase during production of D-xylonate in Saccharomyces cerevisiae. Metabolic Engineering, 2014, 25, 238-247.	3.6	27
13	Strain-dependent variance in short-term adaptation effects of two xylose-fermenting strains of Saccharomyces cerevisiae. Bioresource Technology, 2019, 292, 121922.	4.8	25
14	Identification of the decumbenone biosynthetic gene cluster in Penicillium decumbens and the importance for production of calbistrin. Fungal Biology and Biotechnology, 2018, 5, 18.	2.5	23
15	CRISPR-based transcriptional activation tool for silent genes in filamentous fungi. Scientific Reports, 2021, 11, 1118.	1.6	23
16	Synthetic control devices for gene regulation in Penicillium chrysogenum. Microbial Cell Factories, 2019, 18, 203.	1.9	18
17	Nutrient-supplemented propagation of Saccharomyces cerevisiae improves its lignocellulose fermentation ability. AMB Express, 2020, 10, 157.	1.4	18
18	A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2015, 99, 9439-9447.	1.7	17

Yvonne Nygård

#	Article	IF	CITATIONS
19	Genome Editing in Penicillium chrysogenum Using Cas9 Ribonucleoprotein Particles. Methods in Molecular Biology, 2018, 1772, 213-232.	0.4	15
20	Yeast as a tool to express sugar acid transporters with biotechnological interest. FEMS Yeast Research, 2017, 17, .	1.1	12
21	A CRISPR Interference Screen of Essential Genes Reveals that Proteasome Regulation Dictates Acetic Acid Tolerance in Saccharomyces cerevisiae. MSystems, 2021, 6, e0041821.	1.7	12
22	Development of an Haa1-based biosensor for acetic acid sensing in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2021, 21, .	1.1	9
23	Increased CODH activity in a bioelectrochemical system improves microbial electrosynthesis with CO. Sustainable Energy and Fuels, 2020, 4, 5952-5957.	2.5	8
24	RNA sequencing reveals metabolic and regulatory changes leading to more robust fermentation performance during short-term adaptation of Saccharomyces cerevisiae to lignocellulosic inhibitors. Biotechnology for Biofuels, 2021, 14, 201.	6.2	7
25	Unlocking the potential of fungi: the QuantFung project. Fungal Biology and Biotechnology, 2015, 2, 6.	2.5	6
26	Small scale screening of yeast strains enables high-throughput evaluation of performance in lignocellulose hydrolysates. Bioresource Technology Reports, 2020, 11, 100532.	1.5	6
27	Adaptation during propagation improves Clostridium autoethanogenum tolerance towards benzene, toluene and xylenes during gas fermentation. Bioresource Technology Reports, 2020, 12, 100564.	1.5	4
28	Towards enhancement of gas–liquid mass transfer in bioelectrochemical systems: Validation of a robust CFD model. Biotechnology and Bioengineering, 2021, 118, 3953-3961.	1.7	3