
Antonio J Lopez-Peinado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5344954/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porous catalytic systems in the synthesis of bioactive heterocycles and related compounds. , 2021, , 97-164.		3
2	Basic-carbon nanocatalysts in the efficient synthesis of chromene derivatives. Valorization of both PET residues and mineral sources. Chemical Engineering Journal, 2020, 382, 122795.	6.6	10
3	Cobalt oxide–carbon nanocatalysts with highly enhanced catalytic performance for the green synthesis of nitrogen heterocycles through the FriedlÂ ¤ der condensation. Dalton Transactions, 2019, 48, 5637-5648.	1.6	11
4	Highly Efficient and Selective Catalytic Synthesis of Quinolines Involving Transitionâ€Metalâ€Doped Carbon Aerogels. ChemCatChem, 2017, 9, 1422-1428.	1.8	23
5	Porous Catalytic Systems in the Synthesis of Bioactive Heterocycles and Related Compounds. , 2015, , 377-408.		4
6	Imidazolium Sulfonates as Environmental-Friendly Catalytic Systems for the Synthesis of Biologically Active 2-Amino-4 <i>H</i> -chromenes: Mechanistic Insights. Journal of Physical Chemistry B, 2015, 119, 12042-12049.	1.2	17
7	Ecoâ€Friendly Catalytic Systems Based on Carbonâ€Supported Magnesium Oxide Materials for the FriedlĤder Condensation. ChemCatChem, 2014, 6, 3440-3447.	1.8	16
8	Amino-grafted mesoporous materials based on MCF structure involved in the quinoline synthesis. Mechanistic insights. Journal of Molecular Catalysis A, 2013, 378, 38-46.	4.8	31
9	Bifunctional mesoporous MCF materials as catalysts in the FriedlÃ ¤ der condensation. Catalysis Today, 2013, 218-219, 70-75.	2.2	23
10	Efficient isomerization of safrole by amino-grafted MCM-41 materials as basic catalysts. Catalysis Today, 2012, 179, 159-163.	2.2	13
11	New inorganic–organic hybrid materials based on SBA-15 molecular sieves involved in the quinolines synthesis. Catalysis Today, 2012, 187, 97-103.	2.2	26
12	Green and fast procedure to obtain <i>N</i> â€alkylbenzimidazole derivatives under microwave activation. Environmental Progress and Sustainable Energy, 2011, 30, 469-475.	1.3	3
13	Alkaline carbons as effective catalysts for the microwave-assisted synthesis of N-substituted-gamma-lactams. Applied Catalysis A: General, 2011, 398, 73-81.	2.2	7
14	Zeolites Promoting Quinoline Synthesis via FriedlÃ ¤ der Reaction. Topics in Catalysis, 2010, 53, 1430-1437.	1.3	26
15	The effect of ultrasound on the N-alkylation of imidazole over alkaline carbons: Kinetic aspects. Applied Catalysis A: General, 2010, 378, 26-32.	2.2	14
16	Amino-grafted metallosilicate MCM-41 materials as basic catalysts for eco-friendly processes. Catalysis Today, 2010, 152, 119-125.	2.2	42
17	Experimental and theoretical study of pyrazole N-alkylation catalyzed by basic modified molecular sieves. Chemical Engineering Journal, 2010, 161, 377-383.	6.6	15
18	Last Decade of Research on Activated Carbons as Catalytic Support in Chemical Processes. Catalysis Reviews - Science and Engineering, 2010, 52, 325-380.	5.7	81

#	Article	IF	CITATIONS
19	Coumarins Preparation by Pechmann Reaction Under Ultrasound Irradiation. Synthesis of Hymecromone as Insecticide Intermediate. Catalysis Letters, 2009, 128, 318-322.	1.4	26
20	Microwave Assisted Green Synthesis of Long-chain 1-Alkylimidazoles and Medium-chain 1-alkyl-2-Methylimidazoles with Antiviral Properties Catalyzed by Basic Carbons. Catalysis Letters, 2009, 129, 281-286.	1.4	15
21	Green Synthesis of Acetals/Ketals: Efficient Solvent-Free Process for the Carbonyl/Hydroxyl Group Protection Catalyzed by SBA-15 Materials. Topics in Catalysis, 2009, 52, 148-152.	1.3	24
22	Catalytic properties of alkali metal-modified oxide supports for the Knoevenagel condensation: Kinetic aspects. Catalysis Today, 2009, 142, 278-282.	2.2	61
23	The possible use of alkali metal modified NbMCM-41 in the synthesis of 1,4-dihydropyridine intermediates. Catalysis Today, 2009, 142, 303-307.	2.2	25
24	Sonocatalysis in solvent-free conditions: An efficient eco-friendly methodology to prepare N-alkyl imidazoles using amino-grafted NbMCM-41. Catalysis Today, 2009, 142, 283-287.	2.2	24
25	Novel Basic Mesoporous Catalysts for the Friedläder Reaction from 2â€Aminoaryl Ketones: Quinolinâ€2(1 <i>H</i>)â€ones versus Quinolines. ChemCatChem, 2009, 1, 241-243.	1.8	60
26	Sonocatalysis and zeolites: An efficient route to prepare N-alkylimidazoles. Applied Catalysis A: General, 2008, 338, 130-135.	2.2	10
27	Porosity Inherent to Chemically Crosslinked Polymers. Poly(<i>N</i> -vinylimidazole) Hydrogels. Journal of Physical Chemistry B, 2008, 112, 2809-2817.	1.2	20
28	Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental, 2007, 71, 44-56.	10.8	275
29	Ultrasound accelerated Claisen–Schmidt condensation: A green route to chalcones. Applied Surface Science, 2006, 252, 6071-6074.	3.1	63
30	Surface and catalytic properties of acid metal–carbons prepared by the sol–gel method. Applied Surface Science, 2006, 252, 6075-6079.	3.1	9
31	Interaction of molten salts with a semianthracite char at 743-1173 K. Effects on chemical composition, textural properties, and reactivity in air. Fuel Processing Technology, 2005, 87, 45-51.	3.7	4
32	Sonocatalysis and alkaline-doped carbons: An efficient method for the synthesis of chalcones in heterogeneous media. Catalysis Today, 2005, 107-108, 500-506.	2.2	32
33	Silica/C composites prepared by the sol–gel method. Influence of the synthesis parameters on textural characteristics. Microporous and Mesoporous Materials, 2004, 74, 111-119.	2.2	17
34	Ultrasound-promoted N-propargylation of imidazole by alkaline-doped carbons. Carbon, 2004, 42, 1363-1366.	5.4	21
35	Basic metal–carbons catalysts prepared by sol–gel method. Carbon, 2004, 42, 1575-1582.	5.4	29
36	Synthesis and characterisation of xTiO2·(1â^'x)SiO2–carbon composites. Carbon, 2003, 41, 79-86.	5.4	9

ANTONIO J LOPEZ-PEINADO

#	Article	IF	CITATIONS
37	Study of chemical activation process of a lignocellulosic material with KOH by XPS and XRD. Microporous and Mesoporous Materials, 2003, 60, 173-181.	2.2	154
38	Microwave assisted N-propargylation of imidazole using alkaline promoted carbons. Applied Catalysis A: General, 2003, 240, 287-293.	2.2	17
39	Porosity and adsorption properties of an activated charcoal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188, 167-175.	2.3	36
40	Regeneration of activated carbon after contact with sulfuric acid solution. Journal of Chemical Technology and Biotechnology, 2000, 75, 835-839.	1.6	7
41	Interaction of Molten Salts with a Semianthracite Char at 873 K. A Study by X-ray Diffraction. Energy & Fuels, 1998, 12, 289-297.	2.5	6
42	Study and Characterisation of Activated Carbon Treated with H2SO4 Solutions. Journal of Chemical Technology and Biotechnology, 1997, 68, 82-88.	1.6	10
43	Application of basic clays in microwave activated Michael additions: Preparation of N-substituted imidazoles. Journal of Molecular Catalysis A, 1997, 124, 115-121.	4.8	25
44	Mass and surface changes of activated carbon treated with nitric acid. Thermal behavior of the samples. Thermochimica Acta, 1997, 291, 109-115.	1.2	34
45	Preparation of V/ZrO2 catalysts by the sol-gel method: Physical and structural characterization. Journal of Materials Science, 1996, 31, 437-444.	1.7	12
46	Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon, 1995, 33, 1585-1592.	5.4	984
47	Thermogravimetric study of activated carbon oxidized with H2O2. Thermochimica Acta, 1995, 254, 249-260.	1.2	9
48	Oxidation of activated carbon by hydrogen peroxide. Study of surface functional groups by FT-i.r Fuel, 1994, 73, 387-395.	3.4	102
49	ZrO2 obtained by the sol-gel method: influence of synthesis parameters on physical and structural characteristics. Journal of Materials Science, 1994, 29, 3743-3748.	1.7	32
50	Selective N-propargylation of imidazole under microwave irradiation using some magnesium oxides as catalysts. Catalysis Letters, 1994, 25, 385-392.	1.4	9
51	Alkaline carbons as base catalysts: Alkylation of imidazole with alkyl halides. Journal of Molecular Catalysis, 1993, 85, 253-264.	1.2	13
52	Characterization of basic sites of alkaline carbons by Knoevenagel condensation. Carbon, 1993, 31, 1231-1236.	5.4	31
53	Oxidation of Activated Carbon in Liquid Phase. Study by FT-IR. Spectroscopy Letters, 1993, 26, 1117-1137.	O.5	27
54	Steam gasification of a lignite char catalysed by metals from chromium to zinc. Fuel, 1992, 71, 105-108.	3.4	11

ANTONIO J LOPEZ-PEINADO

#	Article	IF	CITATIONS
55	Stability towards heating and outgassing of activated carbon oxidized in the liquid phase. Thermochimica Acta, 1991, 176, 129-140.	1.2	10
56	Gasification in dry air of coals extracted with tetrahydrofuran. Fuel Processing Technology, 1991, 27, 57-65.	3.7	1
57	Vanadium pentoxide as catalyst in the air gasification of chars. Fuel, 1989, 68, 968-971.	3.4	11
58	Quantitative heat effects associated with pyrolysis of coals, ranging from anthracite to lignite. Fuel, 1989, 68, 999-1004.	3.4	29
59	The striking behaviour of copper catalysing the gasification reaction of coal chars in dry air. Fuel, 1987, 66, 113-118.	3.4	21
60	Reactivity of Spanish coal chars in dry air. Fuel, 1987, 66, 237-241.	3.4	15
61	Behaviour of Ag, Cu and Ag-Cu catalysts in the gasification reaction of a lignite char in air. Effect of SO2 on these catalysts. Fuel, 1986, 65, 1419-1422.	3.4	3
62	Study of heat-treated Spanish lignites. Fuel, 1985, 64, 666-673.	3.4	43
63	Gasification reaction of a lignite char catalysed by Cr, Mn, Fe, Co, Ni, Cu and Zn in dry and wet air. Fuel, 1985, 64, 1220-1223.	3.4	31