
Xingmin Rong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5344950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of Pseudomonas putida on clay minerals and iron oxide. Colloids and Surfaces B: Biointerfaces, 2007, 54, 217-221.	5.0	162
2	Interaction of Pseudomonas putida with kaolinite and montmorillonite: A combination study by equilibrium adsorption, ITC, SEM and FTIR. Colloids and Surfaces B: Biointerfaces, 2008, 64, 49-55.	5.0	146
3	Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis. Journal of Hazardous Materials, 2011, 190, 810-815.	12.4	95
4	Initial adhesion of <i>Bacillus subtilis</i> on soil minerals as related to their surface properties. European Journal of Soil Science, 2012, 63, 457-466.	3.9	78
5	Pseudomonas putida adhesion to goethite: Studied by equilibrium adsorption, SEM, FTIR and ITC. Colloids and Surfaces B: Biointerfaces, 2010, 80, 79-85.	5.0	71
6	Competitive adsorption of Pb and Cd on bacteria–montmorillonite composite. Environmental Pollution, 2016, 218, 168-175.	7.5	71
7	Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite. Applied Clay Science, 2009, 46, 102-108.	5.2	64
8	The effect of extracellular polymeric substances on the adhesion of bacteria to clay minerals and goethite. Chemical Geology, 2013, 360-361, 118-125.	3.3	60
9	Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals. Journal of Hazardous Materials, 2010, 181, 1031-1038.	12.4	59
10	Microcalorimetric investigation on the metabolic activity of Bacillus thuringiensis as influenced by kaolinite, montmorillonite and goethite. Applied Clay Science, 2007, 38, 97-103.	5.2	49
11	Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites. Scientific Reports, 2016, 6, 19499.	3.3	49
12	Effects of low-molecular-weight organic ligands and phosphate on adsorption of Pseudomonas putida by clay minerals and iron oxide. Colloids and Surfaces B: Biointerfaces, 2011, 82, 147-151.	5.0	46
13	Soil Colloids and Minerals Modulate Metabolic Activity of <i>Pseudomonas putida</i> Measured Using Microcalorimetry. Geomicrobiology Journal, 2014, 31, 590-596.	2.0	46
14	Effects of low-molecular-weight organic ligands and phosphate on DNA adsorption by soil colloids and minerals. Colloids and Surfaces B: Biointerfaces, 2007, 54, 53-59.	5.0	44
15	Isothermal Microcalorimetry: A Review of Applications in Soil and Environmental Sciences. Pedosphere, 2007, 17, 137-145.	4.0	42
16	Glyphosate adsorption onto kaolinite and kaolinite-humic acid composites: Experimental and molecular dynamics studies. Chemosphere, 2021, 263, 127979.	8.2	41
17	Microcalorimetric studies on the adsorption of DNA by soil colloidal particles. Colloids and Surfaces B: Biointerfaces, 2006, 49, 49-54.	5.0	39
18	Adhesion of Pseudomonas putida onto kaolinite at different growth phases. Chemical Geology, 2014, 390, 1-8.	3.3	39

XINGMIN RONG

#	Article	IF	CITATIONS
19	Adsorption of Pseudomonas putida on soil particle size fractions: effects of solution chemistry and organic matter. Journal of Soils and Sediments, 2012, 12, 143-149.	3.0	37
20	In situ ATR-FTIR study on the adhesion of Pseudomonas putida to Red soil colloids. Journal of Soils and Sediments, 2014, 14, 504-514.	3.0	29
21	Effects of humic acid on adhesion of Bacillus subtilis to phyllosilicates and goethite. Chemical Geology, 2015, 416, 19-27.	3.3	29
22	Effects of Temperature, pH and Salt Concentrations on the Adsorption of <i>Bacillus subtilis</i> on Soil Clay Minerals Investigated by Microcalorimetry. Geomicrobiology Journal, 2011, 28, 686-691.	2.0	26
23	Copper adsorption on composites of goethite, cells of <i><scp>P</scp>seudomonas putida</i> and humic acid. European Journal of Soil Science, 2017, 68, 514-523.	3.9	24
24	Interfacial interaction between methyl parathion-degrading bacteria and minerals is important in biodegradation, 2014, 25, 1-9.	3.0	22
25	Cadmium adsorption on bacteria–mineral mixtures: effect of naturally occurring ligands. European Journal of Soil Science, 2016, 67, 641-649.	3.9	22
26	Effects of Solution Chemistry on Bacterial Adhesion with Phyllosilicates and Goethite Explained by the Extended DLVO Theory. Geomicrobiology Journal, 2014, 31, 419-430.	2.0	21
27	Surface complexation modeling of Cd(II) sorption to montmorillonite, bacteria, and their composite. Biogeosciences, 2016, 13, 5557-5566.	3.3	21
28	Effects of Interfaces of Goethite and Humic Acid-Goethite Complex on Microbial Degradation of Methyl Parathion. Frontiers in Microbiology, 2018, 9, 1748.	3.5	19
29	Role of interfacial reactions in biodegradation: A case study in a montmorillonite, Pseudomonas sp. Z1 and methyl parathion ternary system. Journal of Hazardous Materials, 2019, 365, 245-251.	12.4	19
30	Conformation, activity and proteolytic stability of acid phosphatase on clay minerals and soil colloids from an Alfisol. Colloids and Surfaces B: Biointerfaces, 2009, 74, 279-283.	5.0	18
31	Sorption of <i>Streptococcus suis</i> on various soil particles from an Alfisol and effects on pathogen metabolic activity. European Journal of Soil Science, 2012, 63, 558-564.	3.9	18
32	Roles of hydrogen bond and ion bridge in adsorption of two bisphenols onto montmorillonite: an experimental and DFT study. Applied Clay Science, 2022, 217, 106406.	5.2	17
33	Crystal face-dependent methylmercury adsorption onto mackinawite (FeS) nanocrystals: A DFT-D3 study. Chemical Engineering Journal, 2021, 420, 127594.	12.7	16
34	Warming and humidification mediated changes of DOM composition in an Alfisol. Science of the Total Environment, 2022, 805, 150198.	8.0	11
35	Biodegradation of methyl parathion in the presence of goethite: The effect of Pseudomonas sp. Z1 adhesion. International Biodeterioration and Biodegradation, 2014, 86, 294-299.	3.9	9
36	Characterization and Cu sorption properties of humic acid from the decomposition of rice straw. Environmental Science and Pollution Research, 2017, 24, 23744-23752.	5.3	7

		_	
VIN	LCN41	NL D	ONG
$\Delta \Pi$		IN IX	UNG

0

#	Article	IF	CITATIONS
37	Cadmium and proton adsorption onto a halophilic archaeal species: The role of cell envelope sulfhydryl sites. Geochimica Et Cosmochimica Acta, 2020, 276, 186-197.	3.9	2

38 Calorimetric analysis. , 2022, , .