
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5344927/publications.pdf Version: 2024-02-01

MIADEN KOBBELIK

#	Article	IF	CITATIONS
1	Photodynamic therapy of cancer: An update. Ca-A Cancer Journal for Clinicians, 2011, 61, 250-281.	329.8	3,902
2	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	4.6	686
3	Induction of Tumor Immunity by Photodynamic Therapy. Photomedicine and Laser Surgery, 1996, 14, 329-334.	0.9	216
4	PDTâ€associated host response and its role in the therapy outcome. Lasers in Surgery and Medicine, 2006, 38, 500-508.	2.1	192
5	Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Research, 2005, 65, 1018-26.	0.9	189
6	Contribution of myeloid and lymphoid host cells to the curative outcome of mouse sarcoma treatment by photodynamic therapy. Cancer Letters, 1999, 137, 91-98.	7.2	135
7	Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors. Cancer Letters, 2002, 183, 43-51.	7.2	110
8	Photodynamic therapy-generated vaccine for cancer therapy. Cancer Immunology, Immunotherapy, 2006, 55, 900-909.	4.2	106
9	Singleâ€wall carbon nanotubes assisted photothermal cancer therapy: Animal study with a murine model of squamous cell carcinoma. Lasers in Surgery and Medicine, 2010, 42, 798-808.	2.1	99
10	Neutrophils as inflammatory and immune effectors in photodynamic therapy-treated mouse SCCVII tumours. Photochemical and Photobiological Sciences, 2002, 1, 690-695.	2.9	93
11	Involvement of damage-associated molecular patterns in tumor response to photodynamic therapy: surface expression of calreticulin and high-mobility group box-1 release. Cancer Immunology, Immunotherapy, 2011, 60, 1431-1437.	4.2	91
12	ENHANCED MACROPHAGE CYTOTOXICITY AGAINST TUMOR CELLS TREATED WITH PHOTODYNAMIC THERAPY. Photochemistry and Photobiology, 1994, 60, 497-502.	2.5	76
13	Preclinical and Clinical Evidence of Immune Responses Triggered in Oncologic Photodynamic Therapy: Clinical Recommendations. Journal of Clinical Medicine, 2020, 9, 333.	2.4	72
14	Induction of Systemic Neutrophil Response in Mice by Photodynamic Therapy of Solid Tumors¶. Photochemistry and Photobiology, 2001, 74, 712.	2.5	71
15	Photodynamic therapy and the immune system in experimental oncology. Photochemical and Photobiological Sciences, 2002, 1, 79-80.	2.9	69
16	Potentiation of photodynamic therapy by immunotherapy: the effect of schizophyllan (SPG). Cancer Letters, 1994, 84, 43-49.	7.2	67
17	Cancer vaccines generated by photodynamic therapy. Photochemical and Photobiological Sciences, 2011, 10, 664-669.	2.9	67
18	Activation of complement C3, C5, and C9 genes in tumors treated by photodynamic therapy. Cancer Immunology, Immunotherapy, 2007, 56, 649-658.	4.2	63

#	Article	IF	CITATIONS
19	Enhancement of Laser Cancer Treatment by a Chitosan-derived Immunoadjuvant¶. Photochemistry and Photobiology, 2005, 81, 190.	2.5	59
20	Acute phase response-associated systemic neutrophil mobilization in mice bearing tumors treated by photodynamic therapy. International Immunopharmacology, 2006, 6, 1259-1266.	3.8	57
21	Enhancement of tumour response to photodynamic therapy by adjuvant mycobacterium cell-wall treatment. Journal of Photochemistry and Photobiology B: Biology, 1998, 44, 151-158.	3.8	56
22	Characteristics of complement activation in mice bearing Lewis lung carcinomas treated by photodynamic therapy. Cancer Letters, 2005, 225, 215-223.	7.2	56
23	Acute phase response induction by cancer treatment with photodynamic therapy. International Journal of Cancer, 2008, 122, 1411-1417.	5.1	54
24	Interaction Between Photodynamic Therapy and BCG Immunotherapy Responsible for the Reduced Recurrence of Treated Mouse Tumors¶. Photochemistry and Photobiology, 2001, 73, 403.	2.5	49
25	Calreticulin as Cancer Treatment Adjuvant: Combination with Photodynamic Therapy and Photodynamic Therapy-Generated Vaccines. Frontiers in Oncology, 2015, 5, 15.	2.8	49
26	Role of Complement Anaphylatoxin C3a in Photodynamic Therapy-elicited Engagement of Host Neutrophils and Other Immune Cells. Photochemistry and Photobiology, 2006, 82, 558.	2.5	46
27	Distribution of disulfonated and tetrasulfonated aluminum phthalocyanine between malignant and host cell populations of a murine fibrosarcoma. Journal of Photochemistry and Photobiology B: Biology, 1993, 20, 173-181.	3.8	43
28	Adjuvant treatment for complement activation increases the effectiveness of photodynamic therapy of solid tumors. Photochemical and Photobiological Sciences, 2004, 3, 812.	2.9	43
29	The impact of macrophage-cancer cell interaction on the efficacy of photodynamic therapy. Photochemical and Photobiological Sciences, 2015, 14, 1403-1409.	2.9	43
30	Complement activation cascade and its regulation: Relevance for the response of solid tumors to photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2008, 93, 53-59.	3.8	37
31	Exploitation of Immune Responseâ€eliciting Properties of Hypocrellin Photosensitizer SL052â€based Photodynamic Therapy for Eradication of Malignant Tumors. Photochemistry and Photobiology, 2009, 85, 1418-1424.	2.5	36
32	Complement upregulation in photodynamic therapy-treated tumors: Role of Toll-like receptor pathway and NFIºB. Cancer Letters, 2009, 281, 232-238.	7.2	32
33	Photoimmunotherapy for Cancer Treatment. Journal of Environmental Pathology, Toxicology and Oncology, 2006, 25, 281-292.	1.2	30
34	PHOTOFRIN ACCUMULATION IN MALIGNANT AND HOST CELL POPULATIONS OF A MURINE FIBROSARCOMA. Photochemistry and Photobiology, 1995, 62, 162-168.	2.5	28
35	Ceramide and sphingosine-1-phosphate act as photodynamic therapy-elicited damage-associated molecular patterns: Cell surface exposure. International Immunopharmacology, 2014, 20, 359-365.	3.8	27
36	Heat shock protein 70 is acute phase reactant: response elicited by tumor treatment with photodynamic therapy. Cell Stress and Chaperones, 2011, 16, 153-162.	2.9	26

#	Article	IF	CITATIONS
37	Role of cell stress signaling networks in cancer cell death and antitumor immune response following proteotoxic injury inflicted by photodynamic therapy. Lasers in Surgery and Medicine, 2018, 50, 491-498.	2.1	26
38	Deposition of Complement Proteins on Cells Treated by Photodynamic Therapy in Vitro. Journal of Environmental Pathology, Toxicology and Oncology, 2006, 25, 189-204.	1.2	26
39	Photodynamic therapy–generated cancer vaccine elicits acute phase and hormonal response in treated mice. Cancer Immunology, Immunotherapy, 2012, 61, 1387-1394.	4.2	23
40	Immunoregulatory Cell Depletion Improves the Efficacy of Photodynamic Therapy-Generated Cancer Vaccines. International Journal of Molecular Sciences, 2015, 16, 27005-27014.	4.1	23
41	Photodynamic Therapy-Generated Cancer Vaccines. Methods in Molecular Biology, 2010, 635, 147-153.	0.9	22
42	Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapyâ€generated vaccine. International Journal of Cancer, 2016, 139, 1372-1378.	5.1	22
43	N-dihydrogalactochitosan as immune and direct antitumor agent amplifying the effects of photodynamic therapy and photodynamic therapy-generated vaccines. International immunopharmacology, 2019, 75, 105764.	3.8	22
44	Novel Immune Stimulant Amplifies Direct Tumoricidal Effect of Cancer Ablation Therapies and Their Systemic Antitumor Immune Efficacy. Cells, 2021, 10, 492.	4.1	18
45	Mreg Activity in Tumor Response to Photodynamic Therapy and Photodynamic Therapy-Generated Cancer Vaccines. Cancers, 2016, 8, 94.	3.7	17
46	Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation. International Journal of Oncology, 2013, 43, 2064-2072.	3.3	16
47	N-dihydrogalactochitosan-supported tumor control by photothermal therapy and photothermal therapy-generated vaccine. Journal of Photochemistry and Photobiology B: Biology, 2020, 204, 111780.	3.8	16
48	Dying cells program their expedient disposal: serum amyloid P component upregulation in vivo and in vitro induced by photodynamic therapy of cancer. Photochemical and Photobiological Sciences, 2007, 6, 1284-1289.	2.9	15
49	THE EFFECT OF DIFFERENTIATION ON PHOTOSENSITIZER UPTAKE BY HL60 CELLS. Photochemistry and Photobiology, 1993, 58, 670-675.	2.5	14
50	<title>Relevance of nitric oxide to the response of tumors to photodynamic therapy</title> . , 1998, 3247, 98.		14
51	Antitumor Efficacy of Photodynamic Therapy Using Novel Nanoformulations of Hypocrellin Photosensitizer SL052. Photochemistry and Photobiology, 2012, 88, 188-193.	2.5	14
52	Upregulation of genes for C-reactive protein and related pentraxin/complement proteins in photodynamic therapy-treated human tumor cells: Enrolment of PI3K/Akt and AP-1. Immunobiology, 2013, 218, 869-874.	1.9	14
53	Expression of complement and pentraxin proteins in acute phase response elicited by tumor photodynamic therapy: The engagement of adrenal hormones. International Immunopharmacology, 2010, 10, 1595-1601.	3.8	13
54	Accumulation of benzoporphyrin derivative in malignant and host cell populations of the murine RIF tumor. Cancer Letters, 1995, 97, 249-254.	7.2	12

#	Article	IF	CITATIONS
55	Amplification of cancer cell apoptosis in photodynamic therapy-treated tumors by adjuvant ceramide analog LCL29. Lasers in Surgery and Medicine, 2011, 43, 614-620.	2.1	12
56	Cationic ceramides and analogues, LCL30 and LCL85, as adjuvants to photodynamic therapy of tumors. Journal of Photochemistry and Photobiology B: Biology, 2013, 126, 72-77.	3.8	10
57	C6-pyridinium ceramide sensitizes SCC17B human head and neck squamous cell carcinoma cells to photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2015, 143, 163-168.	3.8	10
58	The Impact of Complement Activation on Tumor Oxygenation During Photodynamic Therapy. Photochemistry and Photobiology, 2007, 83, 1049-1055.	2.5	9
59	Monitoring ceramide and sphingosine-1-phosphate levels in cancer cells and macrophages from tumours treated by photodynamic therapy. Photochemical and Photobiological Sciences, 2012, 11, 779-784.	2.9	9
60	Enhanced apoptotic cancer cell killing after Foscan photodynamic therapy combined with fenretinide via de novo sphingolipid biosynthesis pathway. Journal of Photochemistry and Photobiology B: Biology, 2016, 159, 191-195.	3.8	9
61	Role of Toll-like receptors in photodynamic-therapy-elicited host response. , 2004, , .		8
62	Optimization of Whole Tumor Cell Vaccines by Interaction with Phagocytic Receptors. Vaccines, 2021, 9, 904.	4.4	6
63	Impact of cell death manipulation on the efficacy of photodynamic therapy-generated cancer vaccines. World Journal of Immunology, 2015, 5, 95.	0.5	6
64	Acute phase response induced following tumor treatment by photodynamic therapy: relevance for the therapy outcome. , 2006, , .		5
65	Enhanced killing of SCC17B human head and neck squamous cell carcinoma cells after photodynamic therapy plus fenretinide via the de novo sphingolipid biosynthesis pathway and apoptosis. International Journal of Oncology, 2015, 46, 2003-2010.	3.3	5
66	Photodynamic Therapy as an Oxidative Anti-Tumor Modality: Negative Effects of Nitric Oxide on Treatment Efficacy. Pharmaceutics, 2021, 13, 593.	4.5	5
67	Tumor-Localized Insult Delivered by Photodynamic Therapy and the Breakdown of Tumor Immunotolerance. , 2013, , 121-132.		4
68	Mechanistic insights into ceramidase inhibitor LCL521-enhanced tumor cell killing by photodynamic and thermal ablation therapies. Photochemical and Photobiological Sciences, 2020, 19, 1145-1151.	2.9	3
69	Ceramide and Sphingosine-1-Phosphate/Sphingosine act as Photodynamic Therapy-Elicited Damage-Associated Molecular Patterns: Release from Cells and Impact on Tumor-Associated Macrophages. Journal of Analytical & Bioanalytical Techniques, 2014, 5, .	0.6	2
70	Hormonal component of tumor photodynamic therapy response. Proceedings of SPIE, 2008, , .	0.8	1
71	Activity of glycated chitosan and other adjuvants to PDT vaccines. , 2015, , .		1
72	Controlling Immunoregulatory Cell Activity for Effective Photodynamic Therapy of Cancer. Methods in Molecular Biology, 2022, 2451, 569-577.	0.9	1

5

#	Article	IF	CITATIONS
73	Advances in the understanding of host response associated with tumor PDT. , 2007, , .		0
74	Tumor PDT-associated immune response: relevance of sphingolipids. , 2010, , .		0