Saba Hemmati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5344457/publications.pdf

Version: 2024-02-01

45 papers

2,666 citations

186265
28
h-index

223800 46 g-index

46 all docs

46 docs citations

46 times ranked

2020 citing authors

#	Article	IF	CITATIONS
1	Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys Lavandulifolia) flowers and evaluation of its catalytic activity. Scientific Reports, 2021, 11, 1983.	3.3	94
2	Bio-inspired synthesis of palladium nanoparticles fabricated magnetic Fe3O4 nanocomposite over Fritillaria imperialis flower extract as an efficient recyclable catalyst for the reduction of nitroarenes. Scientific Reports, 2021, 11, 4515.	3.3	45
3	Preparation and synthesis a new chemotherapeutic drug of silver nanoparticleâ€chitosan composite; Chemical characterization and analysis of their antioxidant, cytotoxicity, and antiâ€acute myeloid leukemia effects in comparison to Daunorubicin in a leukemic mouse model. Applied Organometallic Chemistry, 2020, 34, e5274.	3.5	23
4	Biosynthesis and chemical characterization of polydopamineâ€capped silver nanoparticles for the treatment of acute myeloid leukemia in comparison to doxorubicin in a leukemic mouse model. Applied Organometallic Chemistry, 2020, 34, e5277.	3. 5	26
5	Green synthesis and chemical characterization of <scp><i>Thymus vulgaris</i></scp> leaf aqueous extract conjugated gold nanoparticles for the treatment of acute myeloid leukemia in comparison to doxorubicin in a leukemic mouse model. Applied Organometallic Chemistry, 2020, 34, e5267.	3.5	25
6	Palladium nanoparticles immobilized over <i>Strawberry</i> fruit extract coated Fe ₃ O ₄ NPs: A magnetic reusable nanocatalyst for Suzukiâ€Miyaura coupling reactions. Applied Organometallic Chemistry, 2020, 34, e5653.	3.5	18
7	Fabrication of Pd NPs on pectin-modified Fe3O4 NPs: A magnetically retrievable nanocatalyst for efficient C–C and C–N cross coupling reactions and an investigation of its cardiovascular protective effects. International Journal of Biological Macromolecules, 2020, 160, 1252-1262.	7.5	59
8	Cu(I)â€anchored polyvinyl alcohol coatedâ€magnetic nanoparticles as heterogeneous nanocatalyst in Ullmannâ€type C–N coupling reactions. Applied Organometallic Chemistry, 2020, 34, e5611.	3.5	20
9	In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydrate Polymers, 2020, 235, 115966.	10.2	169
10	Application of copper nanoparticles containing natural compounds in the treatment of bacterial and fungal diseases. Applied Organometallic Chemistry, 2020, 34, e5465.	3.5	21
11	Decoration of silver nanoparticles on multiâ€walled carbon nanotubes: Investigation of its antiâ€acute leukemia property against acute myeloid leukemia and acute T cell leukemia. Applied Organometallic Chemistry, 2020, 34, e5476.	3.5	16
12	In Situ Immobilized Silver Nanoparticles on <i>Rubia tinctorum</i> Extract-Coated Ultrasmall Iron Oxide Nanoparticles: An Efficient Nanocatalyst with Magnetic Recyclability for Synthesis of Propargylamines by A ³ Coupling Reaction. ACS Omega, 2019, 4, 13991-14003.	3.5	91
13	Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4â€disubstituted isoxazoleâ€5(4H)â€ones in water. Applied Organometallic Chemistry, 2019, 33, e5118.	3.5	52
14	Application of biosynthesized palladium nanoparticles (Pd NPs) on ⟨scp⟩⟨i⟩Rosa canina⟨li⟩⟨lscp⟩⟨i⟩fruit⟨li⟩ extractâ€modified graphene oxide as heterogeneous nanocatalyst for cyanation of aryl halides. Applied Organometallic Chemistry, 2019, 33, e5103.	3.5	24
15	Green synthesis of silver nanoparticles based on oil-water interface method with essential oil of orange peel and its application as nanocatalyst for A3 coupling. Materials Science and Engineering C, 2019, 105, 110031.	7.3	38
16	In situ biogenic synthesis of Pd nanoparticles over reduced graphene oxide by using a plant extract (Thymbra spicata) and its catalytic evaluation towards cyanation of aryl halides. Materials Science and Engineering C, 2019, 104, 109919.	7.3	104
17	Biosynthesis of gold nanoparticles using <i>Allium noeanum</i> Reut. ex Regel leaves aqueous extract; characterization and analysis of their cytotoxicity, antioxidant, and antibacterial properties. Applied Organometallic Chemistry, 2019, 33, e5189.	3.5	47
18	Biosynthesis of the silver nanoparticles on the graphene oxide's surface using Pistacia atlantica leaves extract and its antibacterial activity against some human pathogens. Polyhedron, 2019, 161, 338-345.	2.2	33

#	Article	IF	CITATIONS
19	Palladium nanoparticlesâ€decorated triethanolammonium chloride ionic liquidâ€modified TiO ₂ nanoparticles (TiO ₂ /ILâ€Pd): A highly active and recoverable catalyst for Suzuki–Miyaura crossâ€coupling reaction in aqueous medium. Applied Organometallic Chemistry, 2019, 33. e4909.	3.5	9
20	Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Materials Science and Engineering C, 2019, 97, 624-631.	7.3	119
21	Buchwald–Hartwig C–N cross coupling reactions catalyzed by palladium nanoparticles immobilized on thio modified-multi walled carbon nanotubes as heterogeneous and recyclable nanocatalyst. Materials Science and Engineering C, 2019, 96, 310-318.	7.3	71
22	Immobilization of palladium nanoparticles on Metformin-functionalized graphene oxide as a heterogeneous and recyclable nanocatalyst for Suzuki coupling reactions and reduction of 4-nitrophenol. Polyhedron, 2019, 158, 414-422.	2.2	78
23	Sonochemical in situ immobilization of Pd nanoparticles on green tea extract coated Fe3O4 nanoparticles: An efficient and magnetically recyclable nanocatalyst for synthesis of biphenyl compounds under ultrasound irradiations. Materials Science and Engineering C, 2019, 98, 584-593.	7. 3	102
24	Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron, 2019, 158, 8-14.	2.2	232
25	Fe3O4@PEG core/shell nanoparticles as magnetic nanocatalyst for acetylation of amines and alcohols using ultrasound irradiations under solvent-free conditions. Research on Chemical Intermediates, 2019, 45, 507-520.	2.7	15
26	In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Materials Science and Engineering C, 2018, 90, 57-66.	7.3	127
27	In Situ Green Synthesis of Pd Nanoparticles on Tannic Acidâ€Modified Magnetite Nanoparticles as a Green Reductant and Stabilizer Agent: Its Application as a Recyclable Nanocatalyst (Fe ₃ O ₄ @TA/Pd) for Reduction of 4â€Nitrophenol and Suzuki Reactions. ChemistrySelect, 2018, 3, 1820-1826.	1.5	51
28	CuCl heterogenized on metformine-modified multi walled carbon nanotubes as a recyclable nanocatalyst for Ullmann-type C–O and C–N coupling reactions. New Journal of Chemistry, 2018, 42, 2782-2789.	2.8	41
29	Suzuki–Miyaura coupling catalyzed by palladium nanoparticles biosynthesized using <scp><i>Glycyrrhiza glabra</i></scp> as reducing and stabilyzing agent. Applied Organometallic Chemistry, 2018, 32, e4138.	3.5	6
30	Synthesis of 2,5-Dimethyl- <i>N</i> -substituted Pyrroles Catalyzed by Diethylenetriaminepentaacetic Acid Supported on Fe ₃ O ₄ Nanoparticles. Organic Preparations and Procedures International, 2018, 50, 465-481.	1.3	25
31	Biosynthesis of silver nanoparticles using oak leaf extract and their application for electrochemical sensing of hydrogen peroxide. Applied Organometallic Chemistry, 2018, 32, e4537.	3.5	23
32	In situ immobilized palladium nanoparticles on surface of poly-methyldopa coated-magnetic nanoparticles (Fe3O4@PMDA/Pd): A magnetically recyclable nanocatalyst for cyanation of aryl halides with K4[Fe(CN)6]. Journal of Catalysis, 2018, 365, 204-212.	6.2	96
33	Modified magnetic nanoparticles by PEG-400-immobilized Ag nanoparticles (Fe ₃ O ₄ @PEG–Ag) as a core/shell nanocomposite and evaluation of its antimicrobial activity. International Journal of Nanomedicine, 2018. Volume 13. 3965-3973.	6.7	57
34	Green synthesis of palladium nanoparticles using <scp><i>Hibiscus sabdariffa</i></scp> L. flower extract: Heterogeneous and reusable nanocatalyst in Suzuki coupling reactions. Applied Organometallic Chemistry, 2017, 31, e3757.	3.5	30
35	Green synthesis and characterization of monodispersed silver nanoparticles obtained using oak fruit bark extract and their antibacterial activity. Applied Organometallic Chemistry, 2016, 30, 387-391.	3.5	75
36	Pd immobilized on modified magnetic Fe3O4 nanoparticles: Magnetically recoverable and reusable Pd nanocatalyst for Suzuki-Miyaura coupling reactions and Ullmann-type N-arylation of indoles. Journal of Chemical Sciences, 2016, 128, 1157-1162.	1.5	33

#	Article	IF	CITATIONS
37	Preparation of polydopamine sulfamic acid-functionalized magnetic Fe ₃ O ₄ nanoparticles with a core/shell nanostructure as heterogeneous and recyclable nanocatalysts for the acetylation of alcohols, phenols, amines and thiols under solvent-free conditions. Green Chemistry, 2016, 18, 6337-6348.	9.0	140
38	Palladium supported on diaminoglyoximeâ€functionalized Fe ₃ O ₄ nanoparticles as a magnetically separable nanocatalyst in Heck coupling reaction. Applied Organometallic Chemistry, 2015, 29, 825-828.	3 . 5	79
39	Palladium immobilized on amidoximeâ€functionalized magnetic Fe ₃ O ₄ nanoparticles: a highly stable and efficient magnetically recoverable nanocatalyst for sonogashira coupling reaction. Applied Organometallic Chemistry, 2015, 29, 834-839.	3.5	68
40	An efficient, mild and selective Ullmannâ€type <i>N</i> â€trylation of indoles catalysed by Pd immobilized on amidoximeâ€functionalized mesoporous SBAâ€15 as heterogeneous and recyclable nanocatalyst. Applied Organometallic Chemistry, 2015, 29, 195-199.	3 . 5	25
41	Selective hydrogen peroxide oxidation of sulfides to sulfones with carboxylated multi-walled carbon nano tubes (MWCNTs-COOH) as heterogeneous and recyclable nanocatalysts under organic solvent-free conditions. RSC Advances, 2015, 5, 10152-10158.	3.6	54
42	Green synthesis of palladium nanoparticles using <i>Pistacia atlantica kurdica</i> gum and their catalytic performance in Mizoroki–Heck and Suzuki–Miyaura coupling reactions in aqueous solutions. Applied Organometallic Chemistry, 2015, 29, 517-523.	3 . 5	86
43	Application of 1,4-bis(3-methylimidazolium-1-yl)butane ditribromide [bMImB]·(Br ₃) ₂ ionic liquid reagent for selective oxidation of sulfides to sulfoxides. RSC Advances, 2015, 5, 70265-70270.	3.6	12
44	Green and effective route for the synthesis of monodispersed palladium nanoparticles using herbal tea extract (<i>Stachys lavandulifolia</i>) as reductant, stabilizer and capping agent, and their application as homogeneous and reusable catalyst in Suzuki coupling reactions in water. Applied Organometallic Chemistry, 2015, 29, 26-32.	3 . 5	97
45	One-pot tandem reactions for direct conversion of thiols and disulfides to sulfonic esters, and Paal–Knorr synthesis of pyrrole derivatives catalyzed by TCCA. Journal of Sulfur Chemistry, 2013, 34, 347-357.	2.0	6