Shiro Tsukamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5344312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Telecom-wavelength InAs QDs with low fine structure splitting grown by droplet epitaxy on GaAs(111)A vicinal substrates. Applied Physics Letters, 2021, 118, .	1.5	12
2	Reentrant Behavior of the Density vs. Temperature of Indium Islands on GaAs(111)A. Nanomaterials, 2020, 10, 1512.	1.9	2
3	Intermittent growth for InAs quantum dot on GaAs(001). Journal of Crystal Growth, 2020, 551, 125891.	0.7	2
4	Droplet epitaxy quantum dot based infrared photodetectors. Nanotechnology, 2020, 31, 245203.	1.3	10
5	Temperature Activated Dimensionality Crossover in the Nucleation of Quantum Dots by Droplet Epitaxy on GaAs(111)A Vicinal Substrates. Scientific Reports, 2019, 9, 14520.	1.6	11
6	Raman spectroscopy of epitaxial InGaN/Si in the central composition range. Japanese Journal of Applied Physics, 2019, 58, SC1020.	0.8	2
7	Atomistic behaviour of <mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>Tj Ю.Qq1</td><td>1 05784314 r</td></mmi:math>	Tj Ю. Qq1	1 0 5 784314 r
8	Hopkins-Skellam index and origin of spatial regularity in InAs quantum dot formation on GaAs(001). Journal of Applied Physics, 2015, 117, .	1.1	10
9	Incorporation of Mn atoms into the GaAs(110) surface. Journal of Crystal Growth, 2013, 378, 50-52.	0.7	2
10	In situ STM observations of step structures in a trench around an InAs QD at 300°C. Journal of Crystal Growth, 2013, 378, 44-46.	0.7	2
11	S-termination effects for the catalytic activities of Pd on GaN(0001) surfaces. Applied Surface Science, 2012, 258, 8334-8337.	3.1	3
12	Nano-clustered Pd catalysts formed on GaN surface for green chemistry. Journal of Crystal Growth, 2011, 323, 150-153.	0.7	4
13	Spatial point analysis of quantum dot nucleation sites on InAs wetting layer. Surface Science, 2011, 605, L1-L5.	0.8	13
14	In situ STM observation during InAs growth in nano holes at 300°C. Surface Science, 2011, 605, 1320-1323.	0.8	4
15	Statistical Analysis of Surface Reconstruction Domains on InAs Wetting Layer Preceding Quantum Dot Formation. Nanoscale Research Letters, 2010, 5, 1901-1904.	3.1	12
16	Temperature-Dependent Site Control of InAs/GaAs (001) Quantum Dots Using a Scanning Tunneling Microscopy Tip During Growth. Nanoscale Research Letters, 2010, 5, 1930-1934.	3.1	5
17	Reusability, Durability and Treatability of Palladium Catalyst on a Semiconductor Plate: Comparison with Commercially Available Solid-Supported Palladium Catalysts. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 873-876.	1.9	1
18	DFT Calculation for Palladium Supported on S-terminated GaN as Green Chemical Catalyst. E-Journal of Surface Science and Nanotechnology, 2010, 8, 377-380.	0.1	2

SHIRO TSUKAMOTO

#	Article	IF	CITATIONS
19	Development of a Recyclable and Low‣eaching Palladium Catalyst Supported on Sulfurâ€Modified Gallium Arsenideâ€(001) for Use in Suzuki–Miyaura Coupling. ChemCatChem, 2009, 1, 279-285.	1.8	24
20	Preparation of Tethered Palladium Catalysis Supported on Gold(111) and Its Surface Characterization by X-ray Photoelectron Spectroscopy (XPS). Bulletin of the Chemical Society of Japan, 2008, 81, 1012-1018.	2.0	5
21	In-situ STM Studies on III-V Compound Semiconductor Surfaces during MBE Growth. Hyomen Kagaku, 2008, 29, 758-764.	0.0	0
22	Enhancement of Room Temperature Photoluminescence from InAs Quantum Dots by Irradiating Mn. Japanese Journal of Applied Physics, 2007, 46, L801-L803.	0.8	0
23	Ground state lasing at 1.34î¼m from InAsâ^•GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition. Applied Physics Letters, 2007, 90, 241110.	1.5	39
24	Surface reconstructions on Sb-irradiated GaAs(001) formed by molecular beam epitaxy. Microelectronics Journal, 2007, 38, 620-624.	1.1	9
25	Effect of antimony on the density of InAs/Sb:GaAs(100) quantum dots grown by metalorganic chemical-vapor deposition. Journal of Crystal Growth, 2007, 298, 548-552.	0.7	32
26	High density InAsâ^•GaAs quantum dots with enhanced photoluminescence intensity using antimony surfactant-mediated metal organic chemical vapor deposition. Applied Physics Letters, 2006, 89, 183124.	1.5	50
27	Atomistic Insights for InAs Quantum Dot Formation on GaAs(001) using STM within a MBE Growth Chamber. Small, 2006, 2, 386-389.	5.2	45
28	Heteroepitaxial growth of InAs on GaAs(001) by in situ STM located inside MBE growth chamber. Microelectronics Journal, 2006, 37, 1498-1504.	1.1	22
29	Development of a Method for Preparing a Highly Reactive and Stable, Recyclable and Environmentally Benign Organopalladium Catalyst Supported on Sulfur-Terminated Gallium Arsenide(001): A Three-Component Catalyst, {Pd}-S-GaAs(001), and its Properties. Advanced Synthesis and Catalysis, 2006, 348, 1063-1070.	2.1	25
30	Sulfur-Terminated GaAs-Supported Pd Catalyst for the Heck Reaction. Synfacts, 2006, 2006, 1070-1070.	0.0	1
31	In SituScanning Tunneling Microscope Observation of InAs Wetting Layer Formation on GaAs(001) during Molecular Beam Epitaxy Growth at 500 °C. Japanese Journal of Applied Physics, 2006, 45, L777-L779.	0.8	25
32	Highly Reactive Organopalladium Catalyst Formed on Sulfur-Terminated GaAs(001)-(2 × 6) Surface. Japanese Journal of Applied Physics, 2006, 45, L475-L477.	0.8	10
33	Highly uniform self-assembled InAs/GaAs quantum dots emitting at 1.3μm by metalorganic chemical vapor deposition. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 77-80.	1.3	2
34	Conformation and Local Environment Dependent Conductance of DNA Molecules. Small, 2005, 1, 1168-1172.	5.2	29
35	Proposal of Selective Growth Technique Using Periodic Strain Field Caused by Misfit Dislocations. Japanese Journal of Applied Physics, 2004, 43, L1422-L1424.	0.8	3
36	Structural analysis by reflectance anisotropy spectroscopy: As and Sb on GaAs(110). Journal of Physics Condensed Matter, 2004, 16, S4367-S4374.	0.7	4

SHIRO TSUKAMOTO

#	Article	IF	CITATIONS
37	Narrow photoluminescence linewidth (<17â€,meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure metalorganic chemical vapor deposition. Applied Physics Letters, 2004, 84, 2817-2819.	1.5	60
38	Improvement of the uniformity of self-assembled InAs quantum dots grown on InGaAsâ^•GaAs by low-pressure metalorganic chemical vapor deposition. Applied Physics Letters, 2004, 85, 2753-2755.	1.5	23
39	In situ study of low-temperature growth and Mn, Si, Sn doping of GaAs () in molecular beam epitaxy. Journal of Crystal Growth, 2004, 265, 425-433.	0.7	2
40	Novel Palladium Catalyst Supported on GaAs(001) Passivated by Ammonium Sulfide. Chemistry Letters, 2004, 33, 1208-1209.	0.7	20
41	Ga-rich GaAs(001) surfaces observed by STM during high-temperature annealing in MBE. Journal of Crystal Growth, 2003, 251, 46-50.	0.7	17
42	In situ scanning tunneling microscopy of InAs quantum dots on GaAs() during molecular beam epitaxial growth. Surface Science, 2003, 544, 234-240.	0.8	14
43	Passivation and reconstruction-dependent electron accumulation at sulphur treated InAs() surfaces. Surface Science, 2003, 523, 179-188.	0.8	28
44	Gallium-rich reconstructions on GaAs(001). Physica Status Solidi (B): Basic Research, 2003, 240, 91-98.	0.7	27
45	Influence of the reconstruction of GaAs (001) on the electro-optical bulk properties. Journal of Crystal Growth, 2003, 248, 254-258.	0.7	12
46	New Structure Model for theGaAs(001)â^'c(4×4)Surface. Physical Review Letters, 2002, 89, 206102.	2.9	110
47	Novel Organopalladium Material Formed on a Sulfur-Terminated GaAs(001) Surface. Japanese Journal of Applied Physics, 2002, 41, L1197-L1199.	0.8	17
48	In-situ Determination of the Carrier Concentration of (001) GaAs by Reflectance Anisotropy Spectroscopy. Physica Status Solidi A, 2001, 188, 1423-1429.	1.7	21
49	Magic numbers in Ga clusters on GaAs (001) surface. Journal of Crystal Growth, 2000, 209, 258-262.	0.7	24
50	Fabrication of InGaAs quantum dots on GaAs(001) by droplet epitaxy. Journal of Crystal Growth, 2000, 209, 504-508.	0.7	67
51	Magneto-photoluminescence study of InGaAs quantum dots fabricated by droplet epitaxy. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 448-451.	1.3	5
52	InAs Quantum Dots Growth by Modified Droplet Epitaxy Using Sulfur Termination. Japanese Journal of Applied Physics, 2000, 39, 4580-4583.	0.8	23
53	Stoichiometry Study of S-Terminated GaAs(001)-(2 ×6) Surface with Synchrotron Radiation Photoelectron Spectroscopy. Japanese Journal of Applied Physics, 2000, 39, 3943-3946.	0.8	5
54	Nanoscale InGaAs concave disks fabricated by heterogeneous droplet epitaxy. Applied Physics Letters, 2000, 76, 3543-3545.	1.5	64

SHIRO TSUKAMOTO

#	Article	IF	CITATIONS
55	New Self-Organized Growth Method for InGaAs Quantum Dots on GaAs(001) Using Droplet Epitaxy. Japanese Journal of Applied Physics, 1999, 38, L1009-L1011.	0.8	66
56	Atomic-level in situ real-space observation of Ga adatoms on GaAs(001)(2×4)-As surface during molecular beam epitaxy growth. Journal of Crystal Growth, 1999, 201-202, 118-123.	0.7	45
57	Photoelectron and Auger electron diffraction studies of a sulfur-terminated GaAs(001)-(2×6) surface. Surface Science, 1998, 395, 75-81.	0.8	10
58	Surface reconstruction of sulfur-terminated GaAs(001) observed during annealing process by scanning tunneling microscopy. Journal of Crystal Growth, 1995, 150, 33-37.	0.7	9
59	Observation of enhanced lateral confinement of excitons in GaAs quantum wires with various sizes (7–30 nm) by magnetophotoluminescence measurements. Applied Physics Letters, 1995, 66, 2502-2504.	1.5	16
60	\$f 2imes 6\$ Surface Reconstruction of in situ Sulfur-Terminated GaAs(001) Observed by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1994, 33, L1185-L1188.	0.8	25
61	GaAs quantum dots with lateral dimension of 25 nm fabricated by selective metalorganic chemical vapor deposition growth. Applied Physics Letters, 1994, 64, 2495-2497.	1.5	63
62	Exciton radiative lifetime in GaAs quantum wires grown by metalorganic chemicalâ€vapor selective growth. Applied Physics Letters, 1994, 64, 1564-1566.	1.5	14
63	Observation of sulfurâ€ŧerminated GaAs(001)â€(2×6) reconstruction by scanning tunneling microscopy. Applied Physics Letters, 1994, 65, 2199-2201.	1.5	40
64	Optical properties of GaAs quantum dots fabricated by MOCVD selective growth. Solid-State Electronics, 1994, 37, 579-581.	0.8	6
65	Growth process and mechanism of nanometer-scale GaAs dot-structures using MOCVD selective growth. Journal of Crystal Growth, 1993, 126, 707-717.	0.7	49
66	Fabrication and optical properties of GaAs quantum wires and dots by MOCVD selective growth. Semiconductor Science and Technology, 1993, 8, 1082-1088.	1.0	26
67	Fabrication of GaAs quantum wires (â^¼10 nm) by metalorganic chemical vapor selective deposition growth. Applied Physics Letters, 1993, 63, 355-357.	1.5	94
68	Fabrication of InGaAs Strained Quantum Wire Structures Using Selective-Area Metal-Organic Chemical Vapor Deposition Growth. Japanese Journal of Applied Physics, 1993, 32, L1377-L1379.	0.8	30
69	Fabrication of GaAs arrowheadâ€shaped quantum wires by metalorganic chemical vapor deposition selective growth. Applied Physics Letters, 1993, 62, 49-51.	1.5	68
70	Photoluminescence spectra and anisotropic energy shift of GaAs quantum wires in high magnetic fields. Physical Review Letters, 1992, 69, 2963-2966.	2.9	147
71	Fabrication of GaAs quantum wires on epitaxially grown V grooves by metalâ€organic chemicalâ€vapor deposition. Journal of Applied Physics, 1992, 71, 533-535.	1.1	173
72	Fabrication of InGaAs strained quantum wires using selective MOCVD growth on SiO2-patterned GaAs substrate. Journal of Crystal Growth, 1992, 124, 502-506.	0.7	21

#	Article	IF	CITATIONS
73	Transport properties of InAsxSb1â^'x(0≤â‰9.55) on InP grown by molecularâ€beam epitaxy. Journal of Applied Physics, 1990, 67, 6819-6822.	1.1	25
74	Molecularâ€beam epitaxial growth of highâ€quality InSb on InP and GaAs substrates. Journal of Applied Physics, 1989, 66, 3618-3621.	1.1	50