Gaolin Liang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5343838/gaolin-liang-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

164
papers8,408
citations46
h-index87
g-index174
ext. papers9,754
ext. citations8.8
avg, IF6.39
L-index

#	Paper	IF	Citations
164	Enzymatic hydrogelation of small molecules. <i>Accounts of Chemical Research</i> , 2008 , 41, 315-26	24.3	563
163	Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3038-43	16.4	397
162	FePt@CoS(2) yolk-shell nanocrystals as a potent agent to kill HeLa cells. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1428-33	16.4	363
161	Multifunctional yolk-shell nanoparticles: a potential MRI contrast and anticancer agent. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11828-33	16.4	336
160	A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. <i>Nature Chemistry</i> , 2010 , 2, 54-60	17.6	310
159	Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. <i>Nature Communications</i> , 2018 , 9, 2550	17.4	237
158	Supramolecular hydrogel of a D-amino acid dipeptide for controlled drug release in vivo. <i>Langmuir</i> , 2009 , 25, 8419-22	4	234
157	D-glucosamine-based supramolecular hydrogels to improve wound healing. <i>Chemical Communications</i> , 2007 , 843-5	5.8	197
156	Using beta-lactamase to trigger supramolecular hydrogelation. <i>Journal of the American Chemical Society</i> , 2007 , 129, 266-7	16.4	188
155	Intracellular hydrogelation of small molecules inhibits bacterial growth. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 8216-9	16.4	185
154	Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. <i>EMBO Molecular Medicine</i> , 2018 , 10,	12	181
153	Conjugates of naphthalene and dipeptides produce molecular hydrogelators with high efficiency of hydrogelation and superhelical nanofibers. <i>Journal of Materials Chemistry</i> , 2007 , 17, 850-854		175
152	Intracellular Self-Assembly of Taxol Nanoparticles for Overcoming Multidrug Resistance. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9700-4	16.4	149
151	In vitro and in vivo enzymatic formation of supramolecular hydrogels based on self-assembled nanofibers of a beta-amino acid derivative. <i>Small</i> , 2007 , 3, 558-62	11	131
150	Scale-Up Synthesis of Fragrant Nitrogen-Doped Carbon Dots from Bee Pollens for Bioimaging and Catalysis. <i>Advanced Science</i> , 2015 , 2, 1500002	13.6	129
149	Cell Environment-Differentiated Self-Assembly of Nanofibers. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11128-31	16.4	126
148	Controlled self-assembling of gadolinium nanoparticles as smart molecular magnetic resonance imaging contrast agents. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6283-6	16.4	121

(2007-2016)

147	Casp3/7-Instructed Intracellular Aggregation of Fe3O4 Nanoparticles Enhances T2 MR Imaging of Tumor Apoptosis. <i>Nano Letters</i> , 2016 , 16, 2686-91	11.5	121
146	Rational design of a tetrameric protein to enhance interactions between self-assembled fibers gives molecular hydrogels. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4388-92	16.4	119
145	Enzymatic Hydrogelation-Induced Fluorescence Turn-Off for Sensing Alkaline Phosphatase in Vitro and in Living Cells. <i>Analytical Chemistry</i> , 2015 , 87, 6475-8	7.8	112
144	Supramolecular hydrogels based on beta-amino acid derivatives. <i>Chemical Communications</i> , 2006 , 738-4	G .8	112
143	Enzyme-Mediated Tumor Starvation and Phototherapy Enhance Mild-Temperature Photothermal Therapy. <i>Advanced Functional Materials</i> , 2020 , 30, 1909391	15.6	108
142	Alkaline Phosphatase-Triggered Simultaneous Hydrogelation and Chemiluminescence. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1041-1044	16.4	104
141	Alkaline Phosphatase-Triggered Self-Assembly of Near-Infrared Nanoparticles for the Enhanced Photoacoustic Imaging of Tumors. <i>Nano Letters</i> , 2018 , 18, 7749-7754	11.5	100
140	Discriminative fluorescence sensing of biothiols in vitro and in living cells. <i>Analytical Chemistry</i> , 2015 , 87, 3460-6	7.8	98
139	Facile syntheses of conjugated polymers for photothermal tumour therapy. <i>Nature Communications</i> , 2019 , 10, 1192	17.4	94
138	Controlling intracellular macrocyclization for the imaging of protease activity. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2275-9	16.4	93
137	Controlled intracellular self-assembly and disassembly of 19F nanoparticles for MR imaging of caspase 3/7 in zebrafish. <i>ACS Nano</i> , 2015 , 9, 761-8	16.7	89
136	Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents. <i>Nanoscale</i> , 2016 , 8, 1282	. 63 3	84
135	Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents. <i>Scientific Reports</i> , 2013 , 3, 1024	4.9	82
134	Intracellular Self-Assembly and Disassembly of (19)F Nanoparticles Confer Respective "Off" and "On" (19)F NMR/MRI Signals for Legumain Activity Detection in Zebrafish. <i>ACS Nano</i> , 2015 , 9, 5117-24	16.7	78
133	Pyridine-biquinoline-metal complexes for sensing pyrophosphate and hydrogen sulfide in aqueous buffer and in cells. <i>Analytical Chemistry</i> , 2015 , 87, 2678-84	7.8	77
132	Sustained Release of Two Bioactive Factors from Supramolecular Hydrogel Promotes Periodontal Bone Regeneration. <i>ACS Nano</i> , 2019 , 13, 5616-5622	16.7	75
131	In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates. <i>Bioconjugate Chemistry</i> , 2009 , 20, 1660-6	6.3	75
130	Enzymatic control of the self-assembly of small molecules: a new way to generate supramolecular hydrogels. <i>Soft Matter</i> , 2007 , 3, 515-520	3.6	75

129	Dual aggregation-induced emission for enhanced fluorescence sensing of furin activity in vitro and in living cells. <i>Chemical Communications</i> , 2017 , 53, 1037-1040	5.8	65
128	Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. <i>Nano Research</i> , 2015 , 8, 2329-2339	10	64
127	Bioluminescent Turn-On Probe for Sensing Hypochlorite in Vitro and in Tumors. <i>Analytical Chemistry</i> , 2017 , 89, 5693-5696	7.8	63
126	Detection of glutathione in vitro and in cells by the controlled self-assembly of nanorings. <i>Analytical Chemistry</i> , 2013 , 85, 1280-4	7.8	63
125	Multifunctional fluorescent probe for sequential detections of glutathione and caspase-3 in vitro and in cells. <i>Analytical Chemistry</i> , 2013 , 85, 6203-7	7.8	59
124	EGlutamyltranspeptidase-Triggered Intracellular Gadolinium Nanoparticle Formation Enhances the T-Weighted MR Contrast of Tumor. <i>Nano Letters</i> , 2019 , 19, 2428-2433	11.5	55
123	A biocompatible, highly efficient click reaction and its applications. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 865-71	3.9	54
122	Tandem Enzymatic Self-Assembly and Slow Release of Dexamethasone Enhances Its Antihepatic Fibrosis Effect. <i>ACS Nano</i> , 2018 , 12, 9966-9973	16.7	54
121	Oligomeric hydrogels self-assembled from reduction-controlled condensation. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3639-42	16.4	53
120	Alkaline Phosphatase-Instructed Self-Assembly of Gadolinium Nanofibers for Enhanced T-Weighted Magnetic Resonance Imaging of Tumor. <i>Analytical Chemistry</i> , 2017 , 89, 6922-6925	7.8	49
119	A microwave-facilitated rapid synthesis of gold nanoclusters with tunable optical properties for sensing ions and fluorescent ink. <i>Chemical Communications</i> , 2015 , 51, 10539-42	5.8	47
118	Using Bioluminescence Turn-On To Detect Cysteine in Vitro and in Vivo. <i>Analytical Chemistry</i> , 2018 , 90, 4951-4954	7.8	46
117	Glutathione-Depleting Nanomedicines for Synergistic Cancer Therapy. ACS Nano, 2021, 15, 8039-8068	16.7	45
116	Highly Chemiluminescent Graphene Oxide Hybrids Bifunctionalized by N-(Aminobutyl)-N-(Ethylisoluminol)/Horseradish Peroxidase and Sensitive Sensing of Hydrogen Peroxide. <i>ACS Applied Materials & Description (Sensides & ACS Applied Materials & Description (Sensides & ACS Applied Materials & Description (Sensides & Desc</i>	9.5	42
115	Bactericidal functionalization of wrinkle-free fabrics via covalently bonding TiO2@Ag nanoconjugates. <i>Journal of Materials Science</i> , 2009 , 44, 1894-1901	4.3	41
114	Immune Responsive Release of Tacrolimus to Overcome Organ Transplant Rejection. <i>Advanced Materials</i> , 2018 , 30, e1805018	24	41
113	Nanoagent-Promoted Mild-Temperature Photothermal Therapy for Cancer Treatment. <i>Advanced Functional Materials</i> , 2021 , 31, 2100738	15.6	40
112	Intracellular Disassembly of Self-Quenched Nanoparticles Turns NIR Fluorescence on for Sensing Furin Activity in Cells and in Tumors. <i>Analytical Chemistry</i> , 2015 , 87, 6180-5	7.8	39

(2011-2018)

111	Smart Dual Quenching Strategy Enhances the Detection Sensitivity of Intracellular Furin. <i>Analytical Chemistry</i> , 2018 , 90, 1520-1524	7.8	38
110	Enzyme-Controlled Intracellular Self-Assembly of (18)F Nanoparticles for Enhanced MicroPET Imaging of Tumor. <i>Theranostics</i> , 2015 , 5, 1058-67	12.1	38
109	Intracellular self-assembly of nanoparticles for enhancing cell uptake. <i>Chemical Communications</i> , 2012 , 48, 9738-40	5.8	37
108	Using Congo red to report intracellular hydrogelation resulted from self-assembly of small molecules. <i>Chemical Communications</i> , 2007 , 4096-8	5.8	37
107	Bioluminescence Sensing of EGlutamyltranspeptidase Activity In Vitro and In Vivo. <i>Analytical Chemistry</i> , 2017 , 89, 7017-7021	7.8	35
106	Enzymatic self-assembly of nanostructures for theranostics. <i>Theranostics</i> , 2012 , 2, 139-47	12.1	35
105	Rational Design of a Tetrameric Protein to Enhance Interactions between Self-Assembled Fibers Gives Molecular Hydrogels. <i>Angewandte Chemie</i> , 2012 , 124, 4464-4468	3.6	35
104	Bipyridine hydrogel for selective and visible detection and absorption of Cd(2+). <i>Nanoscale</i> , 2015 , 7, 27	9 7.8 04	34
103	Caspase-3 controlled assembly of nanoparticles for fluorescence turn on. <i>Chemical Communications</i> , 2011 , 47, 10320-2	5.8	34
102	Furin-Instructed Intracellular Gold Nanoparticle Aggregation for Tumor Photothermal Therapy. <i>Advanced Functional Materials</i> , 2020 , 30, 2001566	15.6	34
101	A general chemiluminescence strategy for measuring aptamer-target binding and target concentration. <i>Analytical Chemistry</i> , 2014 , 86, 5559-66	7.8	33
100	Oligomeric nanoparticles functionalized with NIR-emitting CdTe/CdS QDs and folate for tumor-targeted imaging. <i>Biomaterials</i> , 2014 , 35, 7881-6	15.6	33
99	Using "On/Off" (19)F NMR/Magnetic Resonance Imaging Signals to Sense Tyrosine Kinase/Phosphatase Activity in Vitro and in Cell Lysates. <i>Analytical Chemistry</i> , 2016 , 88, 3363-8	7.8	33
98	Intracellular Self-Assembly of Cyclic d-Luciferin Nanoparticles for Persistent Bioluminescence Imaging of Fatty Acid Amide Hydrolase. <i>ACS Nano</i> , 2016 , 10, 7147-53	16.7	31
97	A fluorescent switch for sequentially and selectively sensing copper(II) and L-histidine in vitro and in living cells. <i>Analyst, The</i> , 2014 , 139, 3360-4	5	31
96	Furin-Controlled Fe3O4 Nanoparticle Aggregation and 19F Signal II urn-OnIfor Precise MR Imaging of Tumors. <i>Advanced Functional Materials</i> , 2019 , 29, 1903860	15.6	30
95	Hydrazide d-luciferin for in vitro selective detection and intratumoral imaging of Cu(2.). <i>Biosensors and Bioelectronics</i> , 2016 , 83, 200-4	11.8	29
94	Controlling Intracellular Macrocyclization for the Imaging of Protease Activity. <i>Angewandte Chemie</i> , 2011 , 123, 2323-2327	3.6	28

93	Paclitaxel nanoparticle awakens immune system to fight against cancer. <i>Nanoscale</i> , 2017 , 9, 6529-6536	7.7	27
92	Mechanistic study of CBT-Cys click reaction and its application for identifying bioactive N-terminal cysteine peptides in amniotic fluid. <i>Chemical Science</i> , 2017 , 8, 214-222	9.4	27
91	Enzyme-instructed self-aggregation of FeO nanoparticles for enhanced MRI T imaging and photothermal therapy of tumors. <i>Nanoscale</i> , 2020 , 12, 1886-1893	7.7	27
90	Increasing Photothermal Efficacy by Simultaneous Intra- and Intermolecular Fluorescence Quenching. <i>Advanced Functional Materials</i> , 2020 , 30, 1908073	15.6	27
89	Intracellular Peptide Self-Assembly: A Biomimetic Approach for in Situ Nanodrug Preparation. <i>Bioconjugate Chemistry</i> , 2018 , 29, 826-837	6.3	26
88	Carboxylesterase-Cleavable Biotinylated Nanoparticle for Tumor-Dual Targeted Imaging. <i>Theranostics</i> , 2019 , 9, 7359-7369	12.1	26
87	FITC-quencher based caspase 3-activatable nanoprobes for effectively sensing caspase 3 in vitro and in cells. <i>Nanoscale</i> , 2013 , 5, 8963-7	7.7	25
86	Controlled Self-Assembling of Gadolinium Nanoparticles as Smart Molecular Magnetic Resonance Imaging Contrast Agents. <i>Angewandte Chemie</i> , 2011 , 123, 6407-6410	3.6	25
85	A Self-Evaluating Photothermal Therapeutic Nanoparticle. ACS Nano, 2020, 14, 9585-9593	16.7	25
84	Furin-Guided Intracellular Ga Nanoparticle Formation Enhancing Tumor MicroPET Imaging. <i>Analytical Chemistry</i> , 2019 , 91, 14842-14845	7.8	24
83	Legumain-Specific Near-Infrared Fluorescence "Turn On" for Tumor-Targeted Imaging. <i>Analytical Chemistry</i> , 2018 , 90, 8732-8735	7.8	23
82	Folic acid as a versatile motif to construct molecular hydrogelators through conjugations with hydrophobic therapeutic agents. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21838		23
81	Intracellular Hydrogelation of Small Molecules Inhibits Bacterial Growth. <i>Angewandte Chemie</i> , 2007 , 119, 8364-8367	3.6	23
80	Nanocomputed Tomography Imaging of Bacterial Alkaline Phosphatase Activity with an Iodinated Hydrogelator. <i>Analytical Chemistry</i> , 2016 , 88, 11982-11985	7.8	23
79	Multifunctional Bioconjugate for Cancer Cell-Targeted Theranostics. <i>Bioconjugate Chemistry</i> , 2015 , 26, 2571-8	6.3	22
78	Alkaline phosphatase-triggered assembly of etoposide enhances its anticancer effect. <i>Chemical Communications</i> , 2018 , 54, 1853-1856	5.8	22
77	Intracellular Self-Assembly of Nanoprobes for Molecular Imaging. <i>Advanced Biology</i> , 2018 , 2, 1800108	3.5	22
76	Bisphosphonate-containing supramolecular hydrogels for topical decorporation of uranium-contaminated wounds in mice. <i>International Journal of Radiation Biology</i> , 2008 , 84, 353-62	2.9	22

75	Peptide-based supramolecular hydrogels for bioimaging applications. <i>Biomaterials Science</i> , 2021 , 9, 315	5- 3 247	22
74	Quantum Dots as Multifunctional Materials for Tumor Imaging and Therapy. <i>Materials</i> , 2013 , 6, 483-499	9 3.5	21
73	Using enzymatic reactions to enhance the photodynamic therapy effect of porphyrin dityrosine phosphates. <i>Chemical Communications</i> , 2006 , 5021-3	5.8	21
72	Intracellular Proteolytic Disassembly of Self-Quenched Near-Infrared Nanoparticles Turning Fluorescence on for Tumor-Targeted Imaging. <i>Analytical Chemistry</i> , 2017 , 89, 9625-9628	7.8	20
71	Intracellular Self-Assembly of Peptide Conjugates for Tumor Imaging and Therapy. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001211	10.1	20
70	Enzyme-instructed self-assembly of taxol promotes axonal branching. <i>Nanoscale</i> , 2015 , 7, 15605-8	7.7	19
69	Labeling thiols on proteins, living cells, and tissues with enhanced emission induced by FRET. <i>Scientific Reports</i> , 2013 , 3, 3523	4.9	19
68	Intracellular Nanoparticle Formation and Hydroxychloroquine Release for Autophagy-Inhibited Mild-Temperature Photothermal Therapy for Tumors. <i>Advanced Functional Materials</i> , 2021 , 31, 210283	2 ^{15.6}	19
67	Fluorescence turn-on for the highly selective detection of nitric oxide in vitro and in living cells. <i>Analyst, The</i> , 2016 , 141, 2600-5	5	19
66	Intracellular coassembly boosts the anti-inflammation capacity of dexamethasone. <i>Nanoscale</i> , 2017 , 9, 17717-17721	7.7	18
65	Intracellular Self-Assembly of Taxol Nanoparticles for Overcoming Multidrug Resistance. <i>Angewandte Chemie</i> , 2015 , 127, 9836-9840	3.6	18
64	Comparative proteome profile of human placenta from normal and preeclamptic pregnancies. <i>PLoS ONE</i> , 2013 , 8, e78025	3.7	18
63	Hyper-Crosslinkers Lead to Temperature- and pH-Responsive Polymeric Nanogels with Unusual Volume Change. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2623-2627	16.4	17
62	Cathepsin B Turning Bioluminescence "On" for Tumor Imaging. <i>Analytical Chemistry</i> , 2019 , 91, 14834-14	4 <i>8</i> 387	17
61	Biomedical Applications of Fluorescent and Magnetic Resonance Imaging Dual-Modality Probes. <i>ChemBioChem</i> , 2019 , 20, 499-510	3.8	17
60	In situ clicking methylglyoxal for hierarchical self-assembly of nanotubes in supramolecular hydrogel. <i>Nanoscale</i> , 2016 , 8, 766-9	7.7	16
59	DEVD-based hydrogelator minimizes cellular apoptosis induction. Scientific Reports, 2013, 3, 1848	4.9	16
58	A Golgi-Targeting and Dual-Color "Turn-On" Probe for Spatially Precise Imaging of Furin. <i>Analytical Chemistry</i> , 2021 , 93, 1636-1642	7.8	16

Applications of CBT-Cys click reaction: past, present, and future. Science China Chemistry, 2018, 61, 1088-71698 15 57 Using magnetic resonance imaging to study enzymatic hydrogelation. Analytical Chemistry, 2014, 56 7.8 15 86, 5955-61 Oligomeric Hydrogels Self-Assembled from Reduction-Controlled Condensation. Angewandte 3.6 55 15 Chemie, 2015, 127, 3710-3713 Fluorescent switch for fast and selective detection of mercury (II) ions in vitro and in living cells and 6.2 15 54 a simple device for its removal. Talanta, 2014, 125, 204-9 "Magnus nano-bullets" as T/T based dual-modal for in vitro and in vivo MRI visualization. 6 53 15 Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 264-273 Rapid fluorescent detection of neurogenin3 by CdTe quantum dot aggregation. Analyst, The, 2012, 52 14 137, 1775-8 A Bioluminescent Probe for Simultaneously Imaging Esterase and Histone Deacetylase Activity in a 7.8 51 14 Tumor. *Analytical Chemistry*, **2020**, 92, 15275-15279 50 Bridging cells of three colors with two bio-orthogonal click reactions. Chemical Science, 2015, 6, 6425-64314 13 Comparative N-glycoproteomic and phosphoproteomic profiling of human placental plasma membrane between normal and preeclampsia pregnancies with high-resolution mass 49 3.7 13 spectrometry. PLoS ONE, 2013, 8, e80480 48 Identification and analysis of multi-protein complexes in placenta. PLoS ONE, 2013, 8, e62988 3.7 13 Multifunctional small molecule for controlled assembly of oligomeric nanoparticles and crosslinked 47 3.9 12 polymers. Organic and Biomolecular Chemistry, 2011, 9, 6917-9 Self-assembling bisphosphonates into nanofibers to enhance their inhibitory capacity on bone 46 7.7 resorption. *Nanoscale*, **2016**, 8, 10570-5 New method for effectively and quantitatively labeling cysteine residues on chicken eggshell 45 3.9 11 membrane. Organic and Biomolecular Chemistry, 2012, 10, 8082-6 Integrin [I] Receptor Overexpressing on Tumor-Targeted Positive MRI-Guided Chemotherapy. ACS 11 44 9.5 Applied Materials & Interfaces, 2020, 12, 163-176 A near-infrared fluorescent probe for ratiometric sensing of SO in cells and zebrafish. Analyst, The, 43 5 11 **2021**, 145, 7985-7992 Site-selective Csp 3 -H aryloxylation of natural product Tanshinone IIA and its analogues. 42 10 Tetrahedron Letters, 2017, 58, 1822-1825 Total synthesis of ([])-tanshinol B, tanshinone I, and ([])-tanshindiol B and C. Organic and 41 3.9 10 Biomolecular Chemistry, 2018, 16, 3376-3381 Koboquinone A and B, new metabolites of kobophenol a in rats. Chemical and Pharmaceutical 40 1.9 10 Bulletin, 2004, 52, 1489-91

(2008-2016)

39	Magnetic resonance imaging-guided stratified selection of patients for nano-therapy. <i>Annals of Translational Medicine</i> , 2016 , 4, S54	3.2	10
38	Directly observing intracellular nanoparticle formation with nanocomputed tomography. <i>Science Advances</i> , 2020 , 6,	14.3	10
37	Dual Gate-Controlled Therapeutics for Overcoming Bacterium-Induced Drug Resistance and Potentiating Cancer Immunotherapy. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14013-14021	16.4	10
36	Introducing charge tag click reaction in living cells for single cell mass spectrometry. <i>Chemical Science</i> , 2020 , 11, 7308-7312	9.4	9
35	Intracellular self-assembly of Ru(bpy) nanoparticles enables persistent phosphorescence imaging of tumors. <i>Chemical Communications</i> , 2018 , 54, 3460-3463	5.8	9
34	Fluorine substitution enhances the self-assembling ability of hydrogelators. <i>Nanoscale</i> , 2017 , 9, 11429-	1 <i>14</i> 33	9
33	Peptide-based nanostructures for cancer diagnosis and therapy. <i>Current Medicinal Chemistry</i> , 2014 , 21, 2453-66	4.3	9
32	Intracellular synthesis of d-aminoluciferin for bioluminescence generation. <i>Chemical Communications</i> , 2017 , 53, 3567-3570	5.8	8
31	Using Fluorescence On/Off to Trace Tandem Nanofiber Assembly/Disassembly in Living Cells. <i>Analytical Chemistry</i> , 2021 , 93, 5665-5669	7.8	8
30	Covalently Conjugated Hydrogelators for Imaging and Therapeutic Applications. <i>Bioconjugate Chemistry</i> , 2020 , 31, 448-461	6.3	7
29	Metabolites and the pharmacokinetics of kobophenol A from Caragana sinica in rats. <i>Journal of Ethnopharmacology</i> , 2005 , 101, 324-9	5	7
28	X-ray single-crystal analysis of (-)-(S)-equol isolated from rat's feces. <i>Chemistry and Biodiversity</i> , 2005 , 2, 959-63	2.5	5
27	Self-Assembly/Disassembly of Nanostructures Confers Dff/On ignal for Molecular Imaging. <i>ChemNanoMat</i> , 2016 , 2, 344-353	3.5	5
26	Using L-STM to directly visualize enzymatic self-assembly/disassembly of nanofibers. <i>Nanoscale</i> , 2016 , 8, 15142-6	7.7	5
25	Cathespin B-Initiated Cypate Nanoparticle Formation for Tumor Photoacoustic Imaging. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	5
24	Fluorogenic Disassembly of Self-Quenched Near-Infrared Nanoparticles Enables Matrix Metalloproteinase Detection. <i>Journal of Biomedical Nanotechnology</i> , 2018 , 14, 304-311	4	4
23	Gathering nanorings via Fe(2+)-bipyridine coordination. <i>Chemical Communications</i> , 2015 , 51, 11045-7	5.8	3
22	Acid-catalyzed epimerization of kobophenol A to carasinol B. <i>Molecules</i> , 2008 , 13, 938-42	4.8	3

21	Formation of a new oxidative metabolite from kobophenol A by human intestinal bacterium Klebsiella pneumoniae. <i>Chemistry and Biodiversity</i> , 2005 , 2, 506-9	2.5	3
20	Intracellular Synthesis of Hybrid Gallium-68 Nanoparticle Enhances MicroPET Tumor Imaging. <i>Analytical Chemistry</i> , 2021 , 93, 6329-6334	7.8	3
19	Bioluminescence Imaging of Urokinase-Type Plasminogen Activator Activity and in Tumors. <i>Analytical Chemistry</i> , 2021 , 93, 9970-9973	7.8	3
18	Receptor tyrosine kinases-instructed release of its inhibitor from hydrogel to delay ovarian aging. <i>Biomaterials</i> , 2021 , 269, 120536	15.6	3
17	Acidity-Activated Charge Conversion of Lu-Labeled Nanoagent for the Enhanced Photodynamic Radionuclide Therapy of Cancer ACS Applied Materials & Interfaces, 2022,	9.5	2
16	Dual Gate-Controlled Therapeutics for Overcoming Bacterium-Induced Drug Resistance and Potentiating Cancer Immunotherapy. <i>Angewandte Chemie</i> , 2021 , 133, 14132-14140	3.6	2
15	An aminopeptidase N-activatable chemiluminescence probe for image-guided surgery and metastasis tracking of tumor <i>Biosensors and Bioelectronics</i> , 2022 , 208, 114212	11.8	2
14	An Acidity-Initiated Self-Assembly/Disassembly Nanoprobe to Switch on Fluorescence for Tumor-Targeted Near-Infrared Imaging <i>Nano Letters</i> , 2021 ,	11.5	2
13	Hyper-Crosslinkers Lead to Temperature- and pH-Responsive Polymeric Nanogels with Unusual Volume Change. <i>Angewandte Chemie</i> , 2017 , 129, 2667-2671	3.6	1
12	Paclitaxel Hydrogelator Delays Microtubule Aggregation. <i>Chinese Journal of Chemical Physics</i> , 2017 , 30, 239-242	0.9	1
11	Covalent Conjugation of Fluorescence Probes to Nanoparticles for Signal Enhancement. <i>Chemistry Letters</i> , 2013 , 42, 1157-1159	1.7	1
10	Simultaneous enhancement of T and T magnetic resonance imaging of liver tumor at respective low and high magnetic fields <i>Theranostics</i> , 2022 , 12, 410-417	12.1	1
9	V1-Cal hydrogelation enhances its effects on ventricular remodeling reduction and cardiac function improvement post myocardial infarction. <i>Chemical Engineering Journal</i> , 2022 , 433, 134450	14.7	1
8	Lysosome-Targeted and Fluorescence-Turned "On" Cytotoxicity Induced by Alkaline Phosphatase-Triggered Self-Assembly. <i>Advanced Healthcare Materials</i> , 2021 , e2101346	10.1	1
7	Self-assembly of peptide nanofibers for imaging applications. <i>Nanoscale</i> , 2021 , 13, 15142-15150	7.7	1
6	Activity-Based Luciferase-Luciferin Bioluminescence System for Bioimaging Applications. <i>Analysis & Sensing</i> , 2021 , 1, 138		1
5	In situ Activatable Peptide-based Nanoprobes for Tumor Imaging. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 889-899	2.2	0
4	Alkaline phosphatase-triggered self-assembly of near-infrared nanoparticles for the enhanced photoacoustic imaging of tumors. <i>Methods in Enzymology</i> , 2021 , 657, 111-144	1.7	O

LIST OF PUBLICATIONS

3	ROS Turn Nanoparticle Fluorescence on for Imaging Staphylococcus aureus Infection in Vivo <i>Advanced Healthcare Materials</i> , 2022 , e2200453	10.1	0
2	Polymeric carbon nitride-based materials: Rising stars in bioimaging. <i>Biosensors and Bioelectronics</i> , 2022 , 114370	11.8	О
1	Salt-Inducible Kinase 2-Triggered Release of Its Inhibitor from Hydrogel to Suppress Ovarian Cancer Metastasis. <i>Advanced Science</i> ,2202260	13.6	0