Vito Despoja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5343831/publications.pdf

Version: 2024-02-01

840585 794469 27 358 11 19 citations h-index g-index papers 27 27 27 408 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals. International Journal of Molecular Sciences, 2022, 23, 4770.	1.8	5
2	Prediction of Strong Transversal s(TE) Exciton–Polaritons in C60 Thin Crystalline Films. International Journal of Molecular Sciences, 2022, 23, 6943.	1.8	3
3	Wake effect in interactions of ions with graphene-sapphire-graphene composite system. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114447.	1.3	2
4	Magnetoelectric Multiferroicity and Magnetic Anisotropy in Guanidinium Copper(II) Formate Crystal. Materials, 2021, 14, 1730.	1.3	3
5	Plasmonically assisted channels of photoemission from metals. Physical Review B, 2021, 103, .	1.1	13
6	Infra-Red Active Dirac Plasmon Serie in Potassium Doped-Graphene (KC8) Nanoribbons Array on Al2O3 Substrate. Materials, 2021, 14, 4256.	1.3	3
7	<i>Ab initio</i> study of electromagnetic modes in two-dimensional semiconductors: Application to doped phosphorene. Physical Review B, 2021, 104, .	1.1	12
8	Cavity exciton polaritons in two-dimensional semiconductors from first principles. Physical Review Research, 2021, 3, .	1.3	7
9	Optical absorption in array of Ge/Al-shell nanoparticles in an Alumina matrix. Scientific Reports, 2020, 10, 65.	1.6	7
10	Bias-controlled plasmon switching in lithium-doped graphene on dielectric model Al2O3 substrate. Npj 2D Materials and Applications, 2020, 4, .	3.9	6
11	Ge Quantum Dots Coated with Metal Shells (Al, Ta, and Ti) Embedded in Alumina Thin Films for Solar Energy Conversion. ACS Applied Nano Materials, 2020, 3, 8640-8650.	2.4	10
12	Sulfur Structures on Bare and Graphene-Covered Ir(111). Journal of Physical Chemistry C, 2020, 124, 6659-6668.	1.5	7
13	Insights on the Excitation Spectrum of Graphene Contacted with a Pt Skin. Nanomaterials, 2020, 10, 703.	1.9	4
14	LCAO-TDDFT-k- i‰: spectroscopy in the optical limit. Journal of Physics Condensed Matter, 2020, 32, 415901.	0.7	3
15	Estimation of the single-particle band gap and exciton binding energy in two dimensional insulators: a modified G ₀ W ₀ -BSE method approach. New Journal of Physics, 2020, 22, 063052.	1.2	6
16	Wake potential in graphene-insulator-graphene composite systems. Physical Review B, 2019, 100, .	1.1	3
17	Strong acoustic plasmons in chemically doped graphene induced by a nearby metal surface. Physical Review B, 2019, 100, .	1.1	12
18	Tailoring a Molecule's Optical Absorbance Using Surface Plasmonics. Journal of Physical Chemistry C, 2019, 123, 26498-26508.	1.5	4

VITO DESPOJA

#	Article	IF	CITATIONS
19	Analytical modeling of electron energy loss spectroscopy of graphene: Ab initio study versus extended hydrodynamic model. Ultramicroscopy, 2018, 184, 134-142.	0.8	13
20	Strong two-dimensional plasmon in Li-intercalated hexagonal boron-nitride film with low damping. Npj 2D Materials and Applications, 2018, 2, .	3.9	15
21	Experimental and Theoretical Investigation of the Anti-Ferromagnetic Coupling of Cr ^{III} Ions through Diamagnetic â^'Oâ€"Nb ^V â€"Oâ€" Bridges. Inorganic Chemistry, 2017, 56, 6879-6889.	1.9	16
22	<i>Ab initio</i> study of the electron energy loss function in a graphene-sapphire-graphene composite system. Physical Review B, 2017, 96, .	1.1	22
23	Optical absorption and transmission in a molybdenum disulfide monolayer. Physical Review B, 2016, 94,	1.1	26
24	Optical absorption and conductivity in quasi-two-dimensional crystals from first principles: Application to graphene. Physical Review B, 2016, 93, .	1.1	53
25	<i>Ab initio</i> study of electronic excitations and the dielectric function in molybdenum disulfide monolayer. Physical Review B, 2016, 94, .	1.1	14
26	Changing character of electronic transitions in graphene: From single-particle excitations to plasmons. Physical Review B, 2015, 91, .	1.1	56
27	Benchmarking van der Waals functionals with noncontact RPA calculations on graphene-Ag(111). Physical Review B, 2014, 90, .	1.1	33