Pierre WEISS

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5343766/publications.pdf Version: 2024-02-01

DIEDDE WEISS

#	Article	IF	CITATIONS
1	Additive manufacturing of biomaterials for bone tissue engineering – A critical review of the state of the art and new concepts. Progress in Materials Science, 2022, 130, 100963.	16.0	52
2	Application of a Cryo-FIB-SEM-μRaman Instrument to Probe the Depth of Vitreous Ice in a Frozen Sample. Analytical Chemistry, 2022, 94, 8120-8125.	3.2	2
3	Injectable macromolecule-based calcium phosphate bone substitutes. Materials Advances, 2022, 3, 6125-6141.	2.6	8
4	Versatile lysine dendrigrafts and polyethylene glycol hydrogels with inherent biological properties: in vitro cell behavior modulation and in vivo biocompatibility. Journal of Biomedical Materials Research - Part A, 2021, 109, 926-937.	2.1	7
5	Injectable silanized hyaluronic acid hydrogel/biphasic calcium phosphate granule composites with improved handling and biodegradability promote bone regeneration in rabbits. Biomaterials Science, 2021, 9, 5640-5651.	2.6	11
6	A partially demineralized allogeneic bone graft: in vitro osteogenic potential and preclinical evaluation in two different intramembranous bone healing models. Scientific Reports, 2021, 11, 4907.	1.6	7
7	An Extrudable Partially Demineralized Allogeneic Bone Paste Exhibits a Similar Bone Healing Capacity as the "Gold Standard―Bone Graft. Frontiers in Bioengineering and Biotechnology, 2021, 9, 658853.	2.0	4
8	Tailored Three-Dimensionally Printed Triply Periodic Calcium Phosphate Implants: A Preclinical Study for Craniofacial Bone Repair. ACS Biomaterials Science and Engineering, 2020, 6, 553-563.	2.6	30
9	Silanization of Chitosan and Hydrogel Preparation for Skeletal Tissue Engineering. Polymers, 2020, 12, 2823.	2.0	4
10	Development of a Rat Model of Mandibular Irradiation Sequelae for Preclinical Studies of Bone Repair. Tissue Engineering - Part C: Methods, 2020, 26, 447-455.	1.1	3
11	In Situ Forming, Silanized Hyaluronic Acid Hydrogels with Fine Control Over Mechanical Properties and In Vivo Degradation for Tissue Engineering Applications. Advanced Healthcare Materials, 2020, 9, e2000981.	3.9	12
12	Quantifying Oxygen Levels in 3D Bioprinted Cell-Laden Thick Constructs with Perfusable Microchannel Networks. Polymers, 2020, 12, 1260.	2.0	11
13	A Self-Setting Hydrogel of Silylated Chitosan and Cellulose for the Repair of Osteochondral Defects: From in vitro Characterization to Preclinical Evaluation in Dogs. Frontiers in Bioengineering and Biotechnology, 2020, 8, 23.	2.0	16
14	A self-setting hydrogel of silylated chitosan and cellulose for the repair of osteochondral defects in canin model. Osteoarthritis and Cartilage, 2020, 28, S506.	0.6	0
15	Preliminary evaluation of an osteochondral autograft, a prosthetic implant, and a biphasic absorbable implant for osteochondral reconstruction in a sheep model. Veterinary Surgery, 2020, 49, 570-581.	0.5	4
16	Periodontal regenerative medicine using mesenchymal stem cells and biomaterials: A systematic review of pre-clinical studies. Dental Materials Journal, 2019, 38, 867-883.	0.8	12
17	Comparing "intra operative―tissue engineering strategies for the repair of craniofacial bone defects. Journal of Stomatology, Oral and Maxillofacial Surgery, 2019, 120, 432-442.	0.5	5
18	Heparan Sulfate Mimetics: A New Way to Optimize Therapeutic Effects of Hydrogel-Embedded Mesenchymal Stromal Cells in Colonic Radiation-Induced Damage. Scientific Reports, 2019, 9, 164.	1.6	9

#	Article	IF	CITATIONS
19	Reconstruction of segmental mandibular defects: Current procedures and perspectives. Laryngoscope Investigative Otolaryngology, 2019, 4, 587-596.	0.6	40
20	Synthesis of calcium-deficient hydroxyapatite nanowires and nanotubes performed by template-assisted electrodeposition. Materials Science and Engineering C, 2019, 98, 333-346.	3.8	33
21	PiT1/Slc20a1 Is Required for Endoplasmic Reticulum Homeostasis, Chondrocyte Survival, and Skeletal Development. Journal of Bone and Mineral Research, 2019, 34, 387-398.	3.1	29
22	Estimation of linear operators from scattered impulse responses. Applied and Computational Harmonic Analysis, 2019, 47, 730-758.	1.1	5
23	Assessing glucose and oxygen diffusion in hydrogels for the rational design of 3D stem cell scaffolds in regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1238-1246.	1.3	74
24	Adhesion, proliferation and osteogenic differentiation of human MSCs cultured under perfusion with a marine oxygen carrier on an allogenic bone substitute. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 95-107.	1.9	18
25	Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomaterialia, 2018, 65, 112-122.	4.1	113
26	Application of Millifluidics to Encapsulate and Support Viable Human Mesenchymal Stem Cells in a Polysaccharide Hydrogel. International Journal of Molecular Sciences, 2018, 19, 1952.	1.8	11
27	In situ photochemical crosslinking of hydrogel membrane for Guided Tissue Regeneration. Dental Materials, 2018, 34, 1769-1782.	1.6	32
28	Water dynamics in silanized hydroxypropyl methylcellulose based hydrogels designed for tissue engineering. Carbohydrate Polymers, 2018, 202, 404-408.	5.1	13
29	Evaluation of a hydrogel membrane on bone regeneration in furcation periodontal defects in dogs. Dental Materials Journal, 2018, 37, 825-834.	0.8	7
30	A Cellulose/Laponite Interpenetrated Polymer Network (IPN) Hydrogel: Controllable Double-Network Structure with High Modulus. Polymers, 2018, 10, 634.	2.0	12
31	Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1152-1164.	1.3	42
32	Silica nanofibers as a new drug delivery system: a study of the protein–silica interactions. Journal of Materials Chemistry B, 2017, 5, 2908-2920.	2.9	25
33	Autologous fat grafting: A comparative study of four current commercial protocols. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2017, 70, 248-256.	0.5	16
34	Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Advances in Colloid and Interface Science, 2017, 247, 589-609.	7.0	72
35	Si-HPMC/Si-Chitosan hybrid hydrogel for cartilage regenerative medicine: From in vitro to in vivo assessments in nude mice and canine model of osteochondral defects. Osteoarthritis and Cartilage, 2017, 25, S77.	0.6	3
36	Microgels of silylated HPMC as a multimodal system for drug co-encapsulation. International Journal of Pharmaceutics, 2017, 532, 790-801.	2.6	17

#	Article	IF	CITATIONS
37	Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-β1: new insight into intervertebral disc regenerative medicine. Drug Delivery, 2017, 24, 999-1010.	2.5	32
38	si-HPMC/si-CHITOSAN hybrid hydrogel for cartilage regenerative medicine: from in vitro to in vivo assessments in nude mice and canine model of osteochondral defects. Osteoarthritis and Cartilage, 2017, 25, S25-S26.	0.6	1
39	A biomaterial-assisted mesenchymal stromal cell therapy alleviates colonic radiation-induced damage. Biomaterials, 2017, 115, 40-52.	5.7	40
40	Polysaccharide Hydrogels Support the Long-Term Viability of Encapsulated Human Mesenchymal Stem Cells and Their Ability to Secrete Immunomodulatory Factors. Stem Cells International, 2017, 2017, 1-11.	1.2	21
41	Purification of the exopolysaccharide produced by Alteromonas infernus: identification of endotoxins and effective process to remove them. Applied Microbiology and Biotechnology, 2017, 101, 6597-6606.	1.7	10
42	Bone marrow cell extract promotes the regeneration of irradiated bone. PLoS ONE, 2017, 12, e0178060.	1.1	7
43	TGF-β1 and GDF5 Act Synergistically to Drive the Differentiation of Human Adipose Stromal Cells toward <i>Nucleus Pulposus</i> -like Cells. Stem Cells, 2016, 34, 653-667.	1.4	65
44	Adipose derived stromal cells encapsulation in hydrogel particles: potential application to osteoarthritis. Osteoarthritis and Cartilage, 2016, 24, S508-S509.	0.6	0
45	Regenerative medicine of nucleus pulposus niche through biomaterial-assisted transplantation of adipose stromal cell-derived nucleopulpocytes: preliminary experiments in sheep. Osteoarthritis and Cartilage, 2016, 24, S464-S465.	0.6	0
46	Interpenetrated Si-HPMC/alginate hydrogels as a potential scaffold for human tissue regeneration. Journal of Materials Science: Materials in Medicine, 2016, 27, 99.	1.7	14
47	Glycidyl alkoxysilane reactivities towards simple nucleophiles in organic media for improved molecular structure definition in hybrid materials. RSC Advances, 2016, 6, 74087-74099.	1.7	22
48	Maintenance of chondrocyte survival by PIT1/SLC20A1-mediated regulation of endoplasmic reticulum homeostasis. Osteoarthritis and Cartilage, 2016, 24, S135.	0.6	3
49	Vascular imaging with contrast agent in hard and soft tissues using microcomputedâ€ŧomography. Journal of Microscopy, 2016, 262, 40-49.	0.8	24
50	A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: Syringe-foaming using a viscous hydrophilic polymeric solution. Acta Biomaterialia, 2016, 31, 326-338.	4.1	76
51	Functionalisation of Polysaccharides for the Purposes of Electrospinning: A Case Study Using HPMC and Si-HPMC. Gels, 2015, 1, 44-57.	2.1	4
52	A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid. BioMed Research International, 2015, 2015, 1-9.	0.9	16
53	Micro-CT Analysis of Radiation-Induced Osteopenia and Bone Hypovascularization in Rat. Calcified Tissue International, 2015, 97, 62-68.	1.5	20
54	Bone vascularization and bone micro-architecture characterizations according to the μCT resolution. Proceedings of SPIE, 2015, , .	0.8	0

#	Article	IF	CITATIONS
55	Development of mandibular osteoradionecrosis in rats: Importance of dental extraction. Journal of Cranio-Maxillo-Facial Surgery, 2015, 43, 1829-1836.	0.7	17
56	Development of a Cyclosporin-A-Induced Immune Tolerant Rat Model to Test Marrow Allograft Cell Type Effects on Bone Repair. Calcified Tissue International, 2015, 96, 430-437.	1.5	3
57	Autologous Fat Grafting in the Breast: Critical Points and Technique Improvements. Aesthetic Plastic Surgery, 2015, 39, 547-561.	0.5	46
58	Role of the stromal vascular fraction from adipose tissue in association with a phosphocalcic scaffold in bone regeneration in an irradiated area. Journal of Cranio-Maxillo-Facial Surgery, 2015, 43, 1169-1176.	0.7	7
59	Sustained release of TGF-β1 from biodegradable microparticles prepared by a new green process in CO2 medium. International Journal of Pharmaceutics, 2015, 493, 357-365.	2.6	6
60	Direct comparison of current cell-based and cell-free approaches towards the repair of craniofacial bone defects – A preclinical study. Acta Biomaterialia, 2015, 26, 306-317.	4.1	14
61	Interplay of thermal and covalent gelation of silanized hydroxypropyl methyl cellulose gels. Carbohydrate Polymers, 2015, 115, 510-515.	5.1	12
62	BMP-2 delivered from a self-cross-linkable CaP/hydrogel construct promotes bone regeneration in a critical-size segmental defect model of non-union in dogs. Veterinary and Comparative Orthopaedics and Traumatology, 2014, 27, 411-421.	0.2	24
63	Evaluation of new bone formation in irradiated areas using association of mesenchymal stem cells and total fresh bone marrow mixed with calcium phosphate scaffold. Journal of Materials Science: Materials in Medicine, 2014, 25, 2711-2720.	1.7	16
64	Bone vascularization: a way to study bone microarchitecture?. Proceedings of SPIE, 2014, , .	0.8	0
65	The <i>In Vitro</i> and <i>In Vivo</i> Effects of a Low-Molecular-Weight Fucoidan on the Osteogenic Capacity of Human Adipose-Derived Stromal Cells. Tissue Engineering - Part A, 2014, 20, 275-284.	1.6	25
66	Novel and Simple Alternative to Create Nanofibrillar Matrices of Interest for Tissue Engineering. Tissue Engineering - Part C: Methods, 2014, 20, 285-296.	1.1	20
67	A novel injectable, cohesive and toughened Si-HPMC (silanized-hydroxypropyl methylcellulose) composite calcium phosphate cement for bone substitution. Acta Biomaterialia, 2014, 10, 3335-3345.	4.1	71
68	Mesenchymal stromal cells encapsulation in innovative biomaterials: application to osteoarthritis treatment. Osteoarthritis and Cartilage, 2014, 22, S444.	0.6	0
69	Osteoinduction of biphasic calcium phosphate scaffolds in a nude mouse model. Journal of Biomaterials Applications, 2014, 29, 595-604.	1.2	30
70	Design Polysaccharides of Marine Origin: Chemical Modifications to Reach Advanced Versatile Compounds. Current Organic Chemistry, 2014, 18, 867-895.	0.9	38
71	The association of hydrogel and biphasic calcium phosphate in the treatment of dehiscence-type peri-implant defects: an experimental study in dogs. Journal of Materials Science: Materials in Medicine, 2013, 24, 2749-2760.	1.7	17
72	Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide. Journal of Materials Science: Materials in Medicine, 2013, 24, 1875-1884.	1.7	47

#	Article	IF	CITATIONS
73	The influence of different cellulose ethers on both the handling and mechanical properties of calcium phosphate cements for bone substitution. Acta Biomaterialia, 2013, 9, 5740-5750.	4.1	63
74	A recall program for the outcome of conventional root canal treatment performed in a teaching hospital. Acta Odontologica Scandinavica, 2013, 71, 1399-1409.	0.9	8
75	A delivery system of linezolid to enhance the MRSA osteomyelitis prognosis: in vivo experimental assessment. European Journal of Clinical Microbiology and Infectious Diseases, 2013, 32, 195-198.	1.3	5
76	Effects of In Vitro Low Oxygen Tension Preconditioning of Adipose Stromal Cells on Their In Vivo Chondrogenic Potential: Application in Cartilage Tissue Repair. PLoS ONE, 2013, 8, e62368.	1.1	63
77	Determining a Clinically Relevant Strategy for Bone Tissue Engineering: An "All-in-One―Study in Nude Mice. PLoS ONE, 2013, 8, e81599.	1.1	15
78	Réparation ou régénération du squelette, avec des biomatériaux, comment, pourquoi�. MATEC Web Conferences, 2013, 7, 04009.	of 0.1	0
79	Mice with Hypomorphic Expression of the Sodium-Phosphate Cotransporter PiT1/Slc20a1 Have an Unexpected Normal Bone Mineralization. PLoS ONE, 2013, 8, e65979.	1.1	34
80	Microarchitecture of irradiated bone: comparison with healthy bone. Proceedings of SPIE, 2012, , .	0.8	0
81	Clinical Outcomes After Nonsurgical Periodontal Therapy with an Er:YAG Laser Device: A Randomized Controlled Pilot Study. Photomedicine and Laser Surgery, 2012, 30, 347-353.	2.1	12
82	<i>In Vitro</i> Characterization of Calcium Phosphate Biomaterial Loaded with Linezolid for Osseous Bone Defect Implantation. Journal of Biomaterials Applications, 2012, 26, 811-828.	1.2	7
83	Involvement of PiT1 and PiT2 in the phosphate sensing in osteoblastic cells. Bone, 2012, 50, S70.	1.4	2
84	Pharmacological modulation of human mesenchymal stem cell chondrogenesis by a chemically over-sulphated polysaccharide of marine origin: Potential application to cartilage regenerative medicine. Bone, 2012, 50, S96.	1.4	1
85	Cellules souches et biomatériaux injectables pour la médecine régénératrice du cartilageÂ: le consortium «Âchondrograft». Irbm, 2012, 33, 92-97.	3.7	0
86	Intramyocardial Delivery of Mesenchymal Stem Cell-Seeded Hydrogel Preserves Cardiac Function and Attenuates Ventricular Remodeling after Myocardial Infarction. PLoS ONE, 2012, 7, e51991.	1.1	79
87	Pharmacological Modulation of Human Mesenchymal Stem Cell Chondrogenesis by a Chemically Oversulfated Polysaccharide of Marine Origin: Potential Application to Cartilage Regenerative Medicine. Stem Cells, 2012, 30, 471-480.	1.4	65
88	Injection of calcium phosphate pastes: prediction of injection force and comparison with experiments. Journal of Materials Science: Materials in Medicine, 2012, 23, 1593-1603.	1.7	16
89	Assay of in vitro osteoclast activity on dentine, and synthetic calcium phosphate bone substitutes. Journal of Materials Science: Materials in Medicine, 2012, 23, 797-803.	1.7	9
90	Laser-Induced Fluorescence for Subgingival Calculus Detection: Scientific Rational and Clinical Application in Periodontology. Photomedicine and Laser Surgery, 2011, 29, 593-596.	2.1	13

#	Article	IF	CITATIONS
91	Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium. Bone, 2011, 48, 894-902.	1.4	107
92	The Effect of Two- and Three-Dimensional Cell Culture on the Chondrogenic Potential of Human Adipose-Derived Mesenchymal Stem Cells after Subcutaneous Transplantation with an Injectable Hydrogel. Cell Transplantation, 2011, 20, 1575-1588.	1.2	73
93	Sterilization of Exopolysaccharides Produced by Deep-Sea Bacteria: Impact on Their Stability and Degradation. Marine Drugs, 2011, 9, 224-241.	2.2	10
94	Inorganic phosphate stimulates apoptosis in murine MO6-G3 odontoblast-like cells. Archives of Oral Biology, 2011, 56, 977-983.	0.8	17
95	Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. Journal of Materials Science: Materials in Medicine, 2011, 22, 1707-1717.	1.7	36
96	The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cellular and Molecular Life Sciences, 2011, 68, 205-218.	2.4	153
97	An injectable vehicle for nucleus pulposus cell-based therapy. Biomaterials, 2011, 32, 2862-2870.	5.7	203
98	Behaviour of mesenchymal stem cells, fibroblasts and osteoblasts on smooth surfaces. Acta Biomaterialia, 2011, 7, 1525-1534.	4.1	76
99	An in vitro study of two GAC-like marine polysaccharides incorporated into injectable hydrogels for bone and cartilage tissue engineering. Acta Biomaterialia, 2011, 7, 2119-2130.	4.1	28
100	Bone texture analysis on dental radiographic images: results with several angulated radiographs on the same region of interest. , 2011, , .		1
101	Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone. Proceedings of SPIE, 2010, , .	0.8	0
102	Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. Journal of Materials Science: Materials in Medicine, 2010, 21, 855-861.	1.7	58
103	Kinetic studies of a composite carbon nanotube-hydrogel for tissue engineering by rheological methods. Journal of Materials Science: Materials in Medicine, 2010, 21, 1163-1168.	1.7	13
104	The stability mechanisms of an injectable calcium phosphate ceramic suspension. Journal of Materials Science: Materials in Medicine, 2010, 21, 1799-1809.	1.7	21
105	In vitro characterisation of calcium phosphate biomaterials loaded with lidocaine hydrochloride and morphine hydrochloride. Journal of Materials Science: Materials in Medicine, 2010, 21, 3141-3150.	1.7	6
106	083 LASER-INDUCED DISC DEGENERATION: A NEW ANIMAL MODEL TO EVALUATE TISSUE ENGINEERING STRATEGIES. Osteoarthritis and Cartilage, 2010, 18, S43.	0.6	0
107	513 DEGENERATION OF INTERVERTEBRAL DISC: CORRELATION BETWEEN MRI HISTOLOGICAL AND TRANSCRIPTS ANALYSIS. Osteoarthritis and Cartilage, 2010, 18, S230.	0.6	0
108	Hydrogel/calcium phosphate composites require specific properties for three-dimensional culture of human bone mesenchymal cells. Acta Biomaterialia, 2010, 6, 2932-2939.	4.1	28

#	Article	IF	CITATIONS
109	A new technological procedure using sucrose as porogen compound to manufacture porous biphasic calcium phosphate ceramics of appropriate micro- and macrostructure. Ceramics International, 2010, 36, 93-101.	2.3	44
110	<i>In Vivo</i> Assessment of the Antimicrobial Activity of a Calcium-Deficient Apatite Vancomycin Drug Delivery System in a Methicillin-Resistant <i>Staphylococcus aureus</i> Rabbit Osteomyelitis Experimental Model. Antimicrobial Agents and Chemotherapy, 2010, 54, 950-952.	1.4	10
111	Cartilage tissue engineering: From hydrogel to mesenchymal stem cells. Bio-Medical Materials and Engineering, 2010, 20, 159-166.	0.4	10
112	Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. American Journal of Physiology - Cell Physiology, 2010, 298, C355-C364.	2.1	120
113	Injectable composites for bone repair. , 2010, , 255-275.		4
114	Hydrogels for Cartilage Tissue Engineering. , 2010, , 247-268.		6
115	The role of calcium-phosphate crystals in the phosphate-dependent activation of osteoblasts. Bone, 2010, 46, S50.	1.4	0
116	Chondrogenic potential human adipose-derived stem cells after in vivo transplantation with a cellulose hydrogel. Bone, 2010, 46, S77-S78.	1.4	1
117	Effects of oxygen tension on the chondrogenic potential of differentially cultured human adipose-derived stem cells. Bone, 2010, 46, S78.	1.4	0
118	Identification of phenotypic discriminating markers for intervertebral disc cells and articular chondrocytes. Rheumatology, 2009, 48, 1447-1450.	0.9	77
119	From osteoarthritis treatments to future regenerative therapies for cartilage. Drug Discovery Today, 2009, 14, 913-925.	3.2	117
120	The intervertebral disc: From pathophysiology to tissue engineering. Joint Bone Spine, 2009, 76, 614-618.	0.8	78
121	An injectable celluloseâ€based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnology and Bioengineering, 2009, 102, 1259-1267.	1.7	125
122	A comparison between bone reconstruction following the use of mesenchymal stem cells and total bone marrow in association with calcium phosphate scaffold in irradiated bone. Biomaterials, 2009, 30, 763-769.	5.7	42
123	The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering. Biomaterials, 2009, 30, 1568-1577.	5.7	39
124	Gelation studies of a cellulose-based biohydrogel: The influence of pH, temperature and sterilization. Acta Biomaterialia, 2009, 5, 3423-3432.	4.1	56
125	Phosphate-Dependent Regulation of MGP in Osteoblasts: Role of ERK1/2 and Fra-1. Journal of Bone and Mineral Research, 2009, 24, 1856-1868.	3.1	152
126	Effects of high doses of ionising radiation on bone in rats: A new model for evaluation of bone engineering. British Journal of Oral and Maxillofacial Surgery, 2009, 47, 602-607.	0.4	34

#	Article	IF	CITATIONS
127	The role of calcium phosphate crystals in the phosphate-dependent activation of osteoblasts. Bone, 2009, 44, S248.	1.4	1
128	Inorganic phosphate regulates Glvr-1 and -2 expression: Role of calcium and ERK1/2. Biochemical and Biophysical Research Communications, 2009, 381, 259-263.	1.0	29
129	Cartilage Tissue Engineering: Towards a Biomaterial-Assisted Mesenchymal Stem Cell Therapy. Current Stem Cell Research and Therapy, 2009, 4, 318-329.	0.6	195
130	Sedimentation Study of Biphasic Calcium Phosphate Particles. Key Engineering Materials, 2008, 361-363, 365-368.	0.4	4
131	Calcium Phosphate Coated Rapid Prototyped Porous Titanium Scaffolds. Key Engineering Materials, 2008, 361-363, 907-910.	0.4	0
132	Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomaterialia, 2008, 4, 535-543.	4.1	250
133	The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials, 2008, 29, 533-543.	5.7	78
134	Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials, 2008, 29, 1177-1188.	5.7	183
135	Bone growth in rapid prototyped porous titanium implants. Journal of Biomedical Materials Research - Part A, 2008, 85A, 664-673.	2.1	101
136	Labeling of a self-hardening bone substitute using ruthenium tris-bipyridine complexes, for the analysis of its in vivo metabolism. Comptes Rendus Chimie, 2008, 11, 641-649.	0.2	3
137	Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits. Clinical Oral Implants Research, 2008, 19, 1103-1110.	1.9	68
138	Adipose-derived mesenchymal stem cells and biomaterials for cartilage tissue engineering. Joint Bone Spine, 2008, 75, 672-674.	0.8	31
139	Calcium is required for phosphate-dependent stimulation of MGP and OPN expression in osteoblasts. Bone, 2008, 42, S24.	1.4	1
140	Bioactive materials in endodontics. Expert Review of Medical Devices, 2008, 5, 475-494.	1.4	53
141	Selfâ€Hardening Hydrogel for Bone Tissue Engineering. Macromolecular Symposia, 2008, 266, 30-35.	0.4	7
142	Rheological Characterization of Selfâ€Hardening Hydrogel for Tissue Engineering Applications: Gel Point Determination and Viscoelastic Properties. Macromolecular Symposia, 2008, 266, 12-16.	0.4	15
143	Phosphate Stimulates Matrix Gla Protein Expression in Chondrocytes through the Extracellular Signal Regulated Kinase Signaling Pathway. Endocrinology, 2007, 148, 530-537.	1.4	71
144	Calcium Phosphate Coatings on Titanium Alloy via an Electrodeposition Method. Key Engineering Materials, 2007, 330-332, 549-552.	0.4	0

#	Article	IF	CITATIONS
145	Bone Ingrowth at the Expense of a Novel Macroporous Calcium Phosphate Cement. Key Engineering Materials, 2007, 330-332, 811-814.	0.4	15
146	Comparison of Osteoinduction by Autologous Bone and Biphasic Calcium Phosphate Ceramic in Goats. Key Engineering Materials, 2007, 330-332, 1063-1066.	0.4	3
147	Histomorphometric Evaluation of Bone Response to Different Titanium Implant Surfaces. Key Engineering Materials, 2007, 361-363, 613-616.	0.4	0
148	Rheological Properties of an Injectable Bioactive Calcium Phosphate Material. Key Engineering Materials, 2007, 330-332, 847-850.	0.4	2
149	Human adipose tissue-derived multipotent stem cells differentiate in vitro and in vivo into osteocyte-like cells. Biochemical and Biophysical Research Communications, 2007, 361, 342-348.	1.0	76
150	VEGF and VEGF receptors are differentially expressed in chondrocytes. Bone, 2007, 40, 568-576.	1.4	66
151	Biomaterials for tissue reconstruction and bone substitution of the ear, nose and throat, face and neck. Expert Review of Medical Devices, 2007, 4, 729-739.	1.4	10
152	Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. Journal of Biomedical Materials Research - Part A, 2007, 80A, 66-74.	2.1	102
153	Physico-chemical–mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates. Biomaterials, 2007, 28, 956-965.	5.7	102
154	The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials, 2007, 28, 3295-3305.	5.7	102
155	Inflammatory reaction in rats muscle after implantation of biphasic calcium phosphate micro particles. Journal of Materials Science: Materials in Medicine, 2007, 18, 287-294.	1.7	54
156	An electrodeposition method of calcium phosphate coatings on titanium alloy. Journal of Materials Science: Materials in Medicine, 2007, 18, 381-390.	1.7	72
157	Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials, 2006, 27, 3256-3264.	5.7	109
158	Injectable bone substitute to preserve alveolar ridge resorption after tooth extraction: A study in dog. Journal of Materials Science: Materials in Medicine, 2006, 17, 1145-1152.	1.7	32
159	Injectable calcium phosphate scaffold and bone marrow graft for bone reconstruction in irradiated areas: An experimental study in rats. Biomaterials, 2006, 27, 4566-4572.	5.7	35
160	Evaluation of an injectable bone substitute (βTCP/hydroxyapatite/hydroxy-propyl-methyl-cellulose) in severely osteopenic and aged rats. Journal of Biomedical Materials Research - Part A, 2006, 78A, 570-580.	2.1	35
161	Bone repair using a new injectable self-crosslinkable bone substitute. Journal of Orthopaedic Research, 2006, 24, 628-635.	1.2	96
162	Bioactive Calcium Phosphate Material for Dental Endodontic Treatment. Root Apical Deposition Key Engineering Materials, 2006, 309-311, 1157-1160.	0.4	5

#	Article	IF	CITATIONS
163	In vivo bone regeneration with injectable calcium phosphate biomaterial: A three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials, 2005, 26, 5444-5453.	5.7	175
164	A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials, 2005, 26, 6643-6651.	5.7	128
165	Cartilage formation in growth plate and arteries: from physiology to pathology. BioEssays, 2005, 27, 708-716.	1.2	57
166	Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials, 2005, 26, 5509-5517.	5.7	114
167	A New Injectable Bone Substitute Concept (MBCP Gel TM): First Clinical Results in Human Maxillo-Facial Surgery. Key Engineering Materials, 2005, 284-286, 1053-1056.	0.4	4
168	Mesenchymal stem cell therapy to rebuild cartilage. Trends in Molecular Medicine, 2005, 11, 519-526.	3.5	93
169	Maxillary Sinus Bone Grafting with an Injectable Bone Substitute: a Sheep Study. Key Engineering Materials, 2004, 254-256, 193-196.	0.4	1
170	Assessment of Cancellous Bone Architecture after Implantation of an Injectable Bone Substitute. Key Engineering Materials, 2004, 254-256, 55-58.	0.4	0
171	Development of an Odontoblast In Vitro Model to Study Dentin Mineralization. Connective Tissue Research, 2004, 45, 101-108.	1.1	32
172	Alveolar Bone Regeneration for Immediate Implant Placement Using an Injectable Bone Substitute: An Experimental Study in Dogs. Journal of Periodontology, 2004, 75, 663-671.	1.7	52
173	Phosphate Is a Specific Signal for ATDC5 Chondrocyte Maturation and Apoptosis-Associated Mineralization: Possible Implication of Apoptosis in the Regulation of Endochondral Ossification. Journal of Bone and Mineral Research, 2003, 18, 1430-1442.	3.1	126
174	Current state of the art of biphasic calcium phosphate bioceramics. Journal of Materials Science: Materials in Medicine, 2003, 14, 195-200.	1.7	415
175	Noninvasive bone replacement with a new injectable calcium phosphate biomaterial. Journal of Biomedical Materials Research Part B, 2003, 66A, 47-54.	3.0	50
176	Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials. Biomaterials, 2003, 24, 4591-4601.	5.7	147
177	A Self Setting Hydrogel as an Extracellular Synthetic Matrix for Tissue Engineering. Key Engineering Materials, 2003, 254-256, 1107-1110.	0.4	10
178	General properties of silated hydroxyethylcellulose for potential biomedical applications. Biopolymers, 2002, 63, 232-238.	1.2	44
179	In vitro characterization andin vivo properties of a carbonated apatite bone cement. Journal of Biomedical Materials Research Part B, 2002, 60, 633-642.	3.0	63
180	Fourier Transform Infrared Microspectroscopic Investigation of the Organic and Mineral Constituents of Peritubular Dentin: A Horse Study. Calcified Tissue International, 2002, 71, 179-185.	1.5	20

#	Article	IF	CITATIONS
181	Crystallization at the polymer/calcium-phosphate interface in a sterilized injectable bone substitute IBS. Biomaterials, 2002, 23, 2789-2794.	5.7	32
182	Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Advances in Colloid and Interface Science, 2002, 99, 215-228.	7.0	107
183	Skin sensitization study of two hydroxypropyl methylcellulose components (Benecel and E4M) of an injectable bone substitute in guinea pigs. Journal of Materials Science: Materials in Medicine, 2002, 13, 149-154.	1.7	7
184	Fourier transform infrared microspectroscopic investigation of the maturation of nonstoichiometric apatites in mineralized tissues: a horse dentin study. Bone, 2001, 29, 547-552.	1.4	36
185	Interaction between hydroxypropyl methylcellulose and biphasic calcium phosphate after steam sterilisation: Capillary gas chromatography studies. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 573-579.	1.9	12
186	Study of the Maturation of the Organic (Type I Collagen) and Mineral (Nonstoichiometric Apatite) Constituents of a Calcified Tissue (Dentin) as a Function of Location: A Fourier Transform Infrared Microspectroscopic Investigation. Journal of Bone and Mineral Research, 2001, 16, 750-757.	3.1	48
187	Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. Journal of Materials Science: Materials in Medicine, 2001, 12, 385-390.	1.7	82
188	Light scattering experiments on aqueous solutions of selected cellulose ethers: contribution to the study of polymer-mineral interactions in a new injectable biomaterial. Journal of Materials Science: Materials in Medicine, 2001, 12, 201-205.	1.7	12
189	Crystal polymer interaction with new injectable bone substitute; SEM and Hr TEM study. , 2000, 50, 1-7.		22
190	In Vivo Comparison of Two Injectable Calcium Phosphate Biomaterials: Ionic Cement and Polymer-Associated Particulate Ceramic. Key Engineering Materials, 2000, 192-195, 801-804.	0.4	2
191	In situ self hardening bioactive composite for bone and dental surgery. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 217-223.	1.9	38
192	Comparative In Vitro Study of the Bond Strength of Composite to Enamel and Dentine Obtained with Laser Irradiation or Acid-etch. Lasers in Medical Science, 1999, 14, 207-215.	1.0	25
193	Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes. , 1999, 47, 28-35.		138
194	Biphasic calcium phosphate/hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone, 1999, 25, 59S-61S.	1.4	120
195	Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution. Bone, 1999, 25, 71S-74S.	1.4	72
196	Injectable bone substitute using a hydrophilic polymer. Bone, 1999, 25, 67S-70S.	1.4	74
197	A New Injectable Calcium Phosphate Biomaterial for Immediate Bone Filling of Extraction Sockets: A Preliminary Study in Dogs. Journal of Periodontology, 1999, 70, 375-383.	1.7	85

In vitro evaluation of a new injectable calcium phosphate material. , 1998, 39, 660-666.

84

#	Article	IF	CITATIONS
199	Application of FT-IR microspectroscopy to the study of an injectable composite for bone and dental surgery. , 1998, 41, 167-170.		28
200	Fourier-transform infrared spectroscopy study of an organic-mineral composite for bone and dental substitute materials. Journal of Materials Science: Materials in Medicine, 1997, 8, 621-629.	1.7	45
201	Complete Healing of Severe Experimental Osseous Infections Using a Calcium-Deficient Apatite as a Drug-Delivery System. , 0, , .		1