Noriko Usami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5342773/publications.pdf

Version: 2024-02-01

623734 434195 37 980 14 31 citations h-index g-index papers 37 37 37 1259 citing authors docs citations times ranked all docs

#	Article	lF	CITATIONS
1	Platinum nanoparticles: a promising material for future cancer therapy?. Nanotechnology, 2010, 21, 085103.	2.6	345
2	Gadolinium-based nanoparticles to improve the hadrontherapy performances. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1601-1608.	3.3	80
3	Synchrotron radiation beamline to study radioactive materials at the Photon factory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 372, 322-332.	1.6	66
4	Gap Junction Communication and the Propagation of Bystander Effects Induced by Microbeam Irradiation in Human Fibroblast Cultures: The Impact of Radiation Quality. Radiation Research, 2013, 180, 367-375.	1.5	66
5	Replication-dependent and -independent Responses of RAD18 to DNA Damage in Human Cells. Journal of Biological Chemistry, 2006, 281, 34687-34695.	3.4	53
6	Microbeam Irradiation Facilities for Radiobiology in Japan and China. Journal of Radiation Research, 2009, 50, A29-A47.	1.6	49
7	Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: The relevance to cancer risk. International Journal of Radiation Biology, 2015, 91, 62-70.	1.8	37
8	Low-dose Hypersensitivity in Nucleus-irradiated V79 Cells Studied with Synchrotron X-ray Microbeam. Journal of Radiation Research, 2008, 49, 171-180.	1.6	35
9	Bystander Cell Killing in Normal Human Fibroblasts is Induced by Synchrotron X-Ray Microbeams. Radiation Research, 2010, 173, 380-385.	1.5	31
10	Bystander Cell Death is Modified by Sites of Energy Deposition within Cells Irradiated with a Synchrotron X-Ray Microbeam. Radiation Research, 2010, 174, 37-45.	1.5	22
11	High-precision microbeam radiotherapy reveals testicular tissue-sparing effects for male fertility preservation. Scientific Reports, 2019, 9, 12618.	3.3	20
12	Comment on †Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect†M. Nanotechnology, 2012, 23, 078001.	2.6	15
13	Application of an <i>Ex Vivo</i> Tissue Model to Investigate Radiobiological Effects on Spermatogenesis. Radiation Research, 2018, 189, 661-667.	1.5	15
14	Inactivation Action Spectra of Bacillus subtilis Spores with Monochromatic Soft X Rays (0.1-0.6 nm) of Synchrotron Radiation. Radiation Research, 1992, 131, 72.	1.5	14
15	DNA damage and repair kinetics after microbeamÂradiation therapy emulation in livingÂcells using monoenergetic synchrotron X-ray microbeams. Journal of Synchrotron Radiation, 2011, 18, 630-636.	2.4	14
16	Comparison of DNA Breaks at Entrance Channel and Bragg Peak Induced by Fast C6+ Ions. Journal of Radiation Research, 2010, 51, 21-26.	1.6	13
17	X-ray-induced bystander responses reduce spontaneous mutations in V79 cells. Journal of Radiation Research, 2013, 54, 1043-1049.	1.6	13
18	Development of photon microbeam irradiation system for radiobiology. International Congress Series, 2003, 1258, 207-211.	0.2	11

#	Article	IF	CITATIONS
19	Cell cycle tracking for irradiated and unirradiated bystander cells in a single colony with exposure to a soft X-ray microbeam. International Journal of Radiation Biology, 2016, 92, 739-744.	1.8	10
20	Lethal Effect of K-Shell Absorption of Intracellular Phosphorus on Wild-Type and Radiation Sensitive Mutants of Escherichia Coli. Acta Oncológica, 1996, 35, 889-894.	1.8	9
21	Reparability of Lethal Lesions Produced by Phosphorus Photoabsorption in Yeast Cells. Journal of Radiation Research, 2001, 42, 317-331.	1.6	7
22	Comment on "Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles―[Appl. Phys. Lett. 98, 193702 (2011)]. Applied Physics Letters, 2012, 100, 026101.	3.3	7
23	Spatially Fractionated Microbeam Analysis of Tissue-sparing Effect for Spermatogenesis. Radiation Research, 2020, 194, 698-706.	1.5	7
24	Targeting Specific Sites in Biological Systems with Synchrotron X-Ray Microbeams for Radiobiological Studies at the Photon Factory. Quantum Beam Science, 2020, 4, 2.	1.2	7
25	Targeted Nuclear Irradiation with an X-Ray Microbeam Enhances Total JC-1 Fluorescence from Mitochondria. Radiation Research, 2020, 194, 511-518.	1.5	7
26	Radiolytic Degradation of Cystathionine Irradiated with Monochromatic Soft X-rays at the K-shell Resonance Absorption of Sulfur Journal of Radiation Research, 1991, 32, 215-223.	1.6	6
27	Field size effects on DNA damage and proliferation in normal human cell populations irradiated with X-ray microbeams. Scientific Reports, 2021, 11, 7001.	3.3	5
28	Hadrontherapy enhanced by combination with heavy atoms., 2016,, 471-503.		4
29	Enhancement of membrane lipid peroxidation in lung cancer cells irradiated with monoenergetic X-rays at the K-shell resonance absorption peak of phosphorus. Journal of Radiation Research, 2020, 61, 237-242.	1.6	4
30	Enhancement of DNA double-strand break induction and cell killing by K-shell absorption of phosphorus in human cell lines. International Journal of Radiation Biology, 2016, 92, 724-732.	1.8	3
31	Exposure of the cytoplasm to low-dose X-rays modifies ataxia telangiectasia mutated-mediated DNA damage responses. Scientific Reports, 2021, 11, 13113.	3.3	3
32	No Intercellular Regulation of the Cell Cycle among Human Cervical Carcinoma HeLa Cells Expressing Fluorescent Ubiquitination-Based Cell-Cycle Indicators in Modulated Radiation Fields. International Journal of Molecular Sciences, 2021, 22, 12785.	4.1	2
33	3P263 Bystander cell death in V79 cells irradiated with X-ray microbeams of different sizes(Photobiology- radiation biology, and active oxygen,Poster Presentations). Seibutsu Butsuri, 2007, 47, S268.	0.1	O
34	1P-280 Study on the relationship between NO mediated bystander cell death and intracellular energy-deposited sites(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S65.	0.1	O
35	3SP8-04 Repair process of radiation-induced DNA damage induced by X-ray microbeam(3SP8 Frontier in) Tj ETQq1	1 0.7843 0.1	14 rgBT /Ov O
36	1P277 Development of a new method to irradiate only the cytoplasm of mammalian cells with synchrotron X-ray microbeams(Radiobiology & ETQq0 0 0 r	gBT /Over	l o ck 10 Tf 5

#	Article	IF	CITATIONS
37	Enhanced Cell Inactivation and Double-Strand Break Induction in V79 Chinese Hamster Cells by Monochromatic X-Rays at Phosphorus K-Shell Absorption Peak. Quantum Beam Science, 2020, 4, 38.	1.2	0