
Gang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5342659/publications.pdf Version: 2024-02-01

GANC XII

#	Article	IF	CITATIONS
1	Two-dimensional hybrid perovskite solar cells: a review. Environmental Chemistry Letters, 2022, 20, 189-210.	8.3	10
2	Blue-Emitting InP/GaP/ZnS Quantum Dots with Enhanced Stability by Siloxane Capping: Implication for Electroluminescent Devices. ACS Applied Nano Materials, 2022, 5, 2801-2811.	2.4	9
3	Highly luminescent InP–In(Zn)P/ZnSe/ZnS core/shell/shell colloidal quantum dots with tunable emissions synthesized based on growth-doping. Journal of Materials Chemistry C, 2021, 9, 9599-9609.	2.7	17
4	The Relationship between Thermal Characteristics and Microstructure/Composition of Carbon Dioxide Hydrate in the Presence of Cyclopentane. Energies, 2021, 14, 870.	1.6	2
5	High Shunt Resistance SnO ₂ â€₽bO Electron Transport Layer for Perovskite Solar Cells Used in Low Lighting Applications. Advanced Sustainable Systems, 2021, 5, 2100120.	2.7	36
6	Multipleâ€Ring Aromatic Spacer Cation Tailored Interlayer Interaction for Efficient and Airâ€Stable Ruddlesden–Popper Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100495.	3.1	6
7	Multipleâ€Ring Aromatic Spacer Cation Tailored Interlayer Interaction for Efficient and Airâ€Stable Ruddlesden–Popper Perovskite Solar Cells. Solar Rrl, 2021, 5, 2170102.	3.1	24
8	Stable Luminescent CsPbI ₃ Quantum Dots Passivated by (3-Aminopropyl)triethoxysilane. Langmuir, 2020, 36, 10210-10217.	1.6	30
9	Economical Salt-Resistant Superhydrophobic Photothermal Membrane for Highly Efficient and Stable Solar Desalination. ACS Applied Materials & Interfaces, 2020, 12, 35142-35151.	4.0	82
10	A Highâ€Power Aqueous Zinc–Organic Radical Battery with Tunable Operating Voltage Triggered by Selected Anions. ChemSusChem, 2020, 13, 2239-2244.	3.6	59
11	Low-Temperature Synthesis of Highly Efficient, Deep-Red Zn-Cu-In-Se/ZnSe Fluorescence Quantum Dots. Nano, 2019, 14, 1950070.	0.5	0
12	A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways ofÂdipotassium terephthalate. Chemical Science, 2019, 10, 2048-2052.	3.7	118
13	A facile method to synthesize small-sized and superior crystalline Cs _{0.32} WO ₃ nanoparticles for transparent NIR shielding coatings. CrystEngComm, 2019, 21, 3264-3272.	1.3	13
14	Formation and photoluminescence properties of colloidal ZnCuIn(SexS1 â^' x)2/ZnS nanocrystals with gradient composition. Journal of Materials Science, 2019, 54, 2037-2048.	1.7	9
15	Imprinted MoS2 achieve highly efficient self-separative molecule extraction. Journal of Materials Chemistry A, 2018, 6, 7395-7400.	5.2	8
16	A facile dip-coating method for the preparation of separable MoS ₂ sponges and their high-efficient adsorption behaviors of Rhodamine B. Inorganic Chemistry Frontiers, 2018, 5, 827-834.	3.0	39
17	Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 3865-3873.	4.0	48
18	Low-temperature solution-processed MoO _x as hole injection layer for efficient quantum dot light-emitting diodes. RSC Advances, 2017, 7, 27464-27472.	1.7	9

Gang Xu

#	Article	IF	CITATIONS
19	Improved performance of quantum dot light emitting diode by modulating electron injection with yttrium-doped ZnO nanoparticles. Journal of Applied Physics, 2017, 122, .	1.1	22
20	Flower-Like Molybdenum Disulfide for Polarity-Triggered Accumulation/Release of Small Molecules. ACS Applied Materials & Interfaces, 2017, 9, 36431-36437.	4.0	45
21	A superhydrophobic solar selective absorber used in a flat plate solar collector. RSC Advances, 2017, 7, 34125-34130.	1.7	19
22	A simple and low-cost combustion method to prepare monoclinic VO2 with superior thermochromic properties. Scientific Reports, 2016, 6, 39154.	1.6	28
23	Promising photovoltaic application of multi-walled carbon nanotubes in perovskites solar cells for retarding recombination. RSC Advances, 2016, 6, 42413-42420.	1.7	27
24	A novel method to modify the color of VO ₂ -based thermochromic smart films by solution-processed VO ₂ @Au core–shell nanoparticles. RSC Advances, 2016, 6, 47249-47257.	1.7	19
25	All-solid-state nanocomposite electrolytes composed of an ionic polymer with polar groups and surface-modified SiO ₂ nanoparticles for dye-sensitized solar cells. RSC Advances, 2016, 6, 79844-79852.	1.7	9
26	High luminance of CuInS2-based yellow quantum dot light emitting diodes fabricated by all-solution processing. RSC Advances, 2016, 6, 72462-72470.	1.7	20
27	Single-walled carbon nanotubes templated CuO networks for gas sensing. Journal of Materials Chemistry C, 2016, 4, 6575-6580.	2.7	49
28	Enhanced Photovoltaic Performance with Carbon Nanotubes Incorporating into Hole Transport Materials for Perovskite Solar Cells. Journal of Electronic Materials, 2016, 45, 5127-5132.	1.0	14
29	In Situ Grown TiO ₂ Nanospindles Facilitate the Formation of Holey Reduced Graphene Oxide by Photodegradation. ACS Applied Materials & Interfaces, 2016, 8, 7403-7410.	4.0	49
30	Perovskite solar cells based on bottom-fused TiO ₂ nanocones. Journal of Materials Chemistry A, 2016, 4, 1520-1530.	5.2	36
31	Hybrid Organic-Inorganic Perovskites Open a New Era for Low-Cost, High Efficiency Solar Cells. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	19
32	Substrate placement angle-dependent growth of dandelion-like TiO ₂ nanorods for solid-state semiconductor-sensitized solar cells. RSC Advances, 2014, 4, 53335-53343.	1.7	14
33	Ultra-small TiO ₂ nanowire forests on transparent conducting oxide for solid-state semiconductor-sensitized solar cells. RSC Advances, 2014, 4, 46987-46991.	1.7	10
34	Fabrication of CuInS ₂ -Sensitized Solar Cells via an Improved SILAR Process and Its Interface Electron Recombination. ACS Applied Materials & Interfaces, 2013, 5, 10605-10613.	4.0	32
35	A facile process to prepare one dimension VO ₂ nanostructures with superior metal–semiconductor transition. CrystEngComm, 2013, 15, 1095-1106.	1.3	32
36	Low-cost and fast synthesis of nanoporous silica cryogels for thermal insulation applications. Science and Technology of Advanced Materials, 2012, 13, 035003.	2.8	29

Gang Xu

#	Article	IF	CITATIONS
37	Sol–gel template synthesis and characterization of VO2 nanotube arrays. Journal of Sol-Gel Science and Technology, 2012, 63, 103-107.	1.1	22
38	The film thickness dependent thermal stability of Al2O3:Ag thin films as high-temperature solar selective absorbers. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	16
39	Microstructure and Optical Properties of Sm ³⁺ Doped TiO ₂ Thin Films by Oblique Angle Deposition. Integrated Ferroelectrics, 2011, 129, 201-207.	0.3	Ο
40	W-doped anatase TiO2 transparent conductive oxide films: Theory and experiment. Journal of Applied Physics, 2010, 107, .	1.1	49
41	Wavelength multiplexing and tuning in nano-Ag/dielectric multilayers. Applied Physics A: Materials Science and Processing, 2009, 94, 525-530.	1.1	8
42	Electron injection assisted phase transition in a nano-Au-VO2 junction. Applied Physics Letters, 2008, 93, .	1.5	55
43	Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance. Journal of Applied Physics, 2008, 104, .	1.1	47
44	Nano-Ag on vanadium dioxide. I. Localized spectrum tailoring. Journal of Applied Physics, 2008, 104, .	1.1	37
45	Surface Plasmon Resonance of Silver Nanoparticles on Vanadium Dioxide. Journal of Physical Chemistry B, 2006, 110, 2051-2056.	1.2	90
46	Effect of dopant concentration on photocatalytic activity of TiO2 film doped by Mn non-uniformly. Open Chemistry, 2006, 4, 234-245.	1.0	20