Ryan F Seipke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5342297/publications.pdf

Version: 2024-02-01

318942 340414 2,973 40 23 39 citations g-index h-index papers 45 45 45 4159 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antibiotics made to order. Science, 2022, 376, 919-920.	6.0	3
2	ActinoBase: tools and protocols for researchers working on Streptomyces and other filamentous actinobacteria. Microbial Genomics, 2022, 8, .	1.0	2
3	A Standalone \hat{l}^2 -Ketoreductase Acts Concomitantly with Biosynthesis of the Antimycin Scaffold. ACS Chemical Biology, 2021, 16, 1152-1158.	1.6	3
4	A chromatogram-simplified Streptomyces albus host for heterologous production of natural products. Antonie Van Leeuwenhoek, 2020, 113, 511-520.	0.7	11
5	The Desotamide Family of Antibiotics. Antibiotics, 2020, 9, 452.	1.5	14
6	Cryptic or Silent? The Known Unknowns, Unknown Knowns, and Unknown Unknowns of Secondary Metabolism. MBio, 2020, 11, .	1.8	42
7	Regulation of Antimycin Biosynthesis Is Controlled by the ClpXP Protease. MSphere, 2020, 5, .	1.3	5
8	A <i>trans</i> -Acting Cyclase Offloading Strategy for Nonribosomal Peptide Synthetases. ACS Chemical Biology, 2019, 14, 845-849.	1.6	18
9	Direct proteolytic control of an extracytoplasmic function RNA polymerase sigma factor. Access Microbiology, $2019,1,\ldots$	0.2	0
10	Biosynthesis of the 15-Membered Ring Depsipeptide Neoantimycin. ACS Chemical Biology, 2018, 13, 1398-1406.	1.6	18
11	Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Natural Product Reports, 2018, 35, 575-604.	5.2	203
12	Complete genome sequence of Streptomyces formicae KY5, the formicamycin producer. Journal of Biotechnology, 2018, 265, 116-118.	1.9	21
13	A phylogenetic and evolutionary analysis of antimycin biosynthesis. Microbiology (United Kingdom), 2018, 164, 28-39.	0.7	32
14	Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chemical Science, 2017, 8, 3218-3227.	3.7	115
15	Revisiting unexploited antibiotics in search of new antibacterial drug candidates: the case of \hat{I}^3 -actinorhodin. Scientific Reports, 2017, 7, 17419.	1.6	19
16	The Conserved Actinobacterial Two-Component System MtrAB Coordinates Chloramphenicol Production with Sporulation in Streptomyces venezuelae NRRL B-65442. Frontiers in Microbiology, 2017, 8, 1145.	1.5	44
17	The MtrAB two-component system controls antibiotic production in Streptomyces coelicolor A3(2). Microbiology (United Kingdom), 2017, 163, 1415-1419.	0.7	62
18	Coordinate Regulation of Antimycin and Candicidin Biosynthesis. MSphere, 2016, 1, .	1.3	46

#	Article	IF	CITATIONS
19	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
20	Biosynthesis of Antimycins with a Reconstituted 3-Formamidosalicylate Pharmacophore in <i>Escherichia coli</i> . ACS Synthetic Biology, 2015, 4, 559-565.	1.9	35
21	Strain-Level Diversity of Secondary Metabolism in Streptomyces albus. PLoS ONE, 2015, 10, e0116457.	1.1	90
22	Filipins: the first antifungal "weed killers―identified from bacteria isolated from the trap-ant. RSC Advances, 2014, 4, 57267-57270.	1.7	22
23	Regulation of antimycin biosynthesis by the orphan ECF RNA polymerase sigma factor If ^{AntA} . PeerJ, 2014, 2, e253.	0.9	32
24	Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence. Scientific Reports, 2013, 3, 1109.	1.6	27
25	Analysis of the bacterial communities associated with two ant–plant symbioses. MicrobiologyOpen, 2013, 2, 276-283.	1.2	35
26	The regulation and biosynthesis of antimycins. Beilstein Journal of Organic Chemistry, 2013, 9, 2556-2563.	1.3	51
27	Use and Discovery of Chemical Elicitors That Stimulate Biosynthetic Gene Clusters in Streptomyces Bacteria. Methods in Enzymology, 2012, 517, 367-385.	0.4	60
28	Isolating Antifungals from Fungus-Growing Ant Symbionts Using a Genome-Guided Chemistry Approach. Methods in Enzymology, 2012, 517, 47-70.	0.4	19
29	<i>Streptomyces</i> as symbionts: an emerging and widespread theme?. FEMS Microbiology Reviews, 2012, 36, 862-876.	3.9	365
30	Fungus-growing Allomerus ants are associated with antibiotic-producing actinobacteria. Antonie Van Leeuwenhoek, 2012, 101, 443-447.	0.7	46
31	The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology (United Kingdom), 2011, 157, 2681-2693.	0.7	47
32	A mutualistic microbiome. Communicative and Integrative Biology, 2011, 4, 41-43.	0.6	22
33	Draft Genome Sequence of Streptomyces Strain S4, a Symbiont of the Leaf-Cutting Ant Acromyrmex octospinosus. Journal of Bacteriology, 2011, 193, 4270-4271.	1.0	27
34	A Single Streptomyces Symbiont Makes Multiple Antifungals to Support the Fungus Farming Ant Acromyrmex octospinosus. PLoS ONE, 2011, 6, e22028.	1.1	164
35	A mutualistic microbiome: How do fungus-growing ants select their antibiotic-producing bacteria?. Communicative and Integrative Biology, 2011, 4, 41-3.	0.6	16
36	A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biology, 2010, 8, 109.	1.7	211

#	Article	IF	CITATION
37	<i>Streptomyces scabies</i> 87-22 Contains a Coronafacic Acid-Like Biosynthetic Cluster That Contributes to Plant–Microbe Interactions. Molecular Plant-Microbe Interactions, 2010, 23, 161-175.	1.4	101
38	Hopanoids Are Not Essential for Growth of <i>Streptomyces scabies</i> 87-22. Journal of Bacteriology, 2009, 191, 5216-5223.	1.0	43
39	Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie Van Leeuwenhoek, 2008, 94, 3-10.	0.7	124
40	<i>Streptomyces scabies</i> 87-22 Possesses a Functional Tomatinase. Journal of Bacteriology, 2008, 190, 7684-7692.	1.0	60