
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5341738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends in Biotechnology, 2006, 24, 530-536.	9.3	330
2	Overflow Metabolism in <i>Escherichia coli</i> during Steady-State Growth: Transcriptional Regulation and Effect of the Redox Ratio. Applied and Environmental Microbiology, 2006, 72, 3653-3661.	3.1	303
3	Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proceedings of the United States of America, 2007, 104, 2402-2407.	7.1	302
4	Effects of Growth Mode and Pyruvate Carboxylase on Succinic Acid Production by Metabolically Engineered Strains of Escherichia coli. Applied and Environmental Microbiology, 2002, 68, 1715-1727.	3.1	233
5	Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. Journal of Industrial Microbiology and Biotechnology, 2002, 28, 325-332.	3.0	217
6	Evaluation of Membrane Filtration and Ozonation Processes for Treatment of Reactive-Dye Wastewater. Journal of Environmental Engineering, ASCE, 1998, 124, 272-277.	1.4	216
7	A co-fermentation strategy to consume sugar mixtures effectively. Journal of Biological Engineering, 2008, 2, 3.	4.7	137
8	Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environmental and Experimental Botany, 2008, 63, 19-27.	4.2	121
9	Lactate and Acrylate Metabolism by Megasphaera elsdenii under Batch and Steady-State Conditions. Applied and Environmental Microbiology, 2012, 78, 8564-8570.	3.1	121
10	Optimization of the ion-exchange analysis of organic acids from fermentation. Analytica Chimica Acta, 1997, 338, 69-75.	5.4	100
11	High Glycolytic Flux Improves Pyruvate Production by a Metabolically Engineered <i>Escherichia coli</i> Strain. Applied and Environmental Microbiology, 2008, 74, 6649-6655.	3.1	100
12	Continuous-flow ferrohydrodynamic sorting of particles and cells in microfluidic devices. Microfluidics and Nanofluidics, 2012, 13, 645-654.	2.2	99
13	Homolactate Fermentation by Metabolically Engineered Escherichia coli Strains. Applied and Environmental Microbiology, 2007, 73, 456-464.	3.1	93
14	Metabolic Analysis of <i>Escherichia coli</i> in the Presence and Absence of the Carboxylating Enzymes Phosphoenolpyruvate Carboxylase and Pyruvate Carboxylase. Applied and Environmental Microbiology, 2000, 66, 1844-1850.	3.1	87
15	Microbial production of lactic acid. Biotechnology Letters, 2015, 37, 955-972.	2.2	79
16	Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains. Microbial Cell Factories, 2012, 11, 77.	4.0	75
17	A substrateâ€selective coâ€fermentation strategy with <i>Escherichia coli</i> produces lactate by simultaneously consuming xylose and glucose. Biotechnology and Bioengineering, 2009, 102, 822-827.	3.3	70
18	Physical properties of low molecular weight triglycerides for the development of bio-diesel fuel models. Bioresource Technology, 1996, 56, 55-60.	9.6	69

#	Article	IF	CITATIONS
19	The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli. Applied Microbiology and Biotechnology, 2003, 62, 76-82.	3.6	66
20	Peptide hydrophobicity and partitioning in poly(ethylene glycol)/magnesium sulfate aqueous two-phase systems. Biotechnology Progress, 1990, 6, 479-484.	2.6	63
21	The physiological effects and metabolic alterations caused by the expression of Rhizobium etli pyruvate carboxylase in Escherichia coli. Applied Microbiology and Biotechnology, 2001, 56, 188-195.	3.6	63
22	Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Applied Microbiology and Biotechnology, 2003, 63, 267-273.	3.6	62
23	Increased recombinant protein production inEscherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein. Biotechnology and Bioengineering, 2006, 94, 538-542.	3.3	60
24	Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. Journal of Biotechnology, 2009, 143, 213-223.	3.8	58
25	Expression of an Anaplerotic Enzyme, Pyruvate Carboxylase, Improves Recombinant Protein Production in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2002, 68, 5620-5624.	3.1	57
26	Recent Progress in the Microbial Production of Pyruvic Acid. Fermentation, 2017, 3, 8.	3.0	53
27	Accelerating pathway evolution by increasing the gene dosage of chromosomal segments. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7105-7110.	7.1	52
28	Elucidation of Enzymes in Fermentation Pathways Used by <i>Clostridium thermosuccinogenes</i> Growing on Inulin. Applied and Environmental Microbiology, 2000, 66, 246-251.	3.1	51
29	Metabolic Flux Analysis of Clostridium thermosuccinogenes. Applied Biochemistry and Biotechnology, 2001, 94, 51-70.	2.9	48
30	Microbial Mineralization of Organic Nitrogen Forms in Poultry Litters. Journal of Environmental Quality, 2010, 39, 1848-1857.	2.0	45
31	Changes in the S-alk(en)yl Cysteine Sulfoxides and their Biosynthetic Intermediates during Onion Storage. Journal of the American Society for Horticultural Science, 1999, 124, 177-183.	1.0	43
32	Aerobic production of alanine by Escherichia coli aceF ldhA mutants expressing the Bacillus sphaericus alaD gene. Applied Microbiology and Biotechnology, 2004, 65, 56-60.	3.6	40
33	In situ extraction versus the use of an external column in fermentation. Applied Microbiology and Biotechnology, 1989, 30, 614.	3.6	38
34	Predicting partition coefficients in polyethylene glycol-potassium phosphate aqueous two-phase systems. Journal of Chromatography A, 1991, 586, 341-346.	3.7	38
35	Density and viscosity of low-molecular weight triglycerides and their mixtures. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 1261-1265.	1.9	38
36	Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate. Applied Microbiology and Biotechnology, 2016, 100, 7777-7785.	3.6	38

MARK A EITEMAN

Ċ

#	Article	IF	CITATIONS
37	Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase. Biosensors and Bioelectronics, 2016, 85, 603-610.	10.1	36
38	Adaptation of Escherichia coli to Elevated Sodium Concentrations Increases Cation Tolerance and Enables Greater Lactic Acid Production. Applied and Environmental Microbiology, 2014, 80, 2880-2888.	3.1	32
39	DNA plasmid production in different host strains of Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 521-530.	3.0	31
40	Pressure Drop through Raw Food Waste Compost containing Synthetic Bulking Agents. Biosystems Engineering, 1999, 72, 375-384.	0.4	29
41	Physiological response of central metabolism inEscherichia coli to deletion of pyruvate oxidase and introduction of heterologous pyruvate carboxylase. Biotechnology and Bioengineering, 2005, 90, 64-76.	3.3	28
42	Evaluation of nitrogen retention and microbial populations in poultry litter treated with chemical, biological or adsorbent amendments. Journal of Environmental Management, 2011, 92, 1760-1766.	7.8	28
43	Succinate production from xyloseâ€glucose mixtures using a consortium of engineered <i>Escherichia coli</i> . Engineering in Life Sciences, 2015, 15, 65-72.	3.6	28
44	Fed-batch two-phase production of alanine by a metabolically engineered Escherichia coli. Biotechnology Letters, 2006, 28, 1695-1700.	2.2	26
45	Eliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli. Microbial Cell Factories, 2017, 16, 114.	4.0	26
46	The effect of free-volume changes on partitioning in magnesium sulfate-poly(ethylene glycol) aqueous two-phase systems. Biochimica Et Biophysica Acta - General Subjects, 1989, 992, 125-127.	2.4	25
47	Production of citramalate by metabolically engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2016, 113, 2670-2675.	3.3	25
48	Removal of aromatic inhibitors produced from lignocellulosic hydrolysates by Acinetobacter baylyi ADP1 with formation of ethanol by Kluyveromyces marxianus. Biotechnology for Biofuels, 2019, 12, 91.	6.2	25
49	A Correlation for Predicting Partition Coefficients in Aqueous Two-Phase Systems. Separation Science and Technology, 1992, 27, 313-324.	2.5	23
50	Glucose repression of xylitol production in Candida tropicalis mixed-sugar fermentations. Biotechnology Letters, 2001, 23, 1663-1667.	2.2	23
51	Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis. Applied Microbiology and Biotechnology, 2003, 63, 96-100.	3.6	23
52	Temperature-dependent phase inversion and its effect on partitioning in the poly(ethylene) Tj ETQq0 0 0 rgBT μ	Overlock 1	0 Tf 50 142 1
53	Influence of Redox Potential on Product Distribution in Clostridium thermosuccinogenes. Applied Biochemistry and Biotechnology, 1999, 82, 91-102.	2.9	22

⁵⁴A Mathematical Model To Predict the Partitioning of Peptides and Peptide-Modified Proteins in
Aqueous Two-Phase Systems. Biotechnology Progress, 1994, 10, 513-519.2.621

MARK A EITEMAN

#	Article	IF	CITATIONS
55	Ground kenaf core as a filtration aid. Industrial Crops and Products, 2001, 13, 155-161.	5.2	21
56	Engineered citrate synthase alters Acetate Accumulation in Escherichia coli. Metabolic Engineering, 2020, 61, 171-180.	7.0	21
57	Comparison Of Synthetic and Natural Bulking Agents In Food Waste Composting. Compost Science and Utilization, 2003, 11, 27-35.	1.2	20
58	Hydrolysis of Tifton 85 bermudagrass in a pressurized batch hot water reactor. Journal of Chemical Technology and Biotechnology, 2008, 83, 505-512.	3.2	20
59	Partition of isomeric dipeptides in poly(ethylene glycol)/magnesium sulfate aqueous two-phase systems. Biochimica Et Biophysica Acta - General Subjects, 1991, 1073, 451-455.	2.4	19
60	THE EFFECT OF THE pH DIFFERENCE BETWEEN PHASES ON PARTITIONING IN POLY(ETHYLENE) TJ ETQq0 0 0 rgBT 171-183.	/Overlock 2.6	10 Tf 50 54 18
61	Characterization of the Furfural and 5-Hydroxymethylfurfural (HMF) Metabolic Pathway in the Novel Isolate Pseudomonas putida ALS1267. Applied Biochemistry and Biotechnology, 2020, 190, 918-930.	2.9	18
62	Engineered citrate synthase improves citramalic acid generation in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2020, 117, 2781-2790.	3.3	18
63	Pyruvate Production by Escherichia coli by Use of Pyruvate Dehydrogenase Variants. Applied and Environmental Microbiology, 2021, 87, e0048721.	3.1	18
64	pH and base counterion affect succinate production in dual-phase Escherichia coli fermentations. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1101-1109.	3.0	17
65	Conversion of glucoseâ€xylose mixtures to pyruvate using a consortium of metabolically engineered <i>Escherichia coli</i> . Engineering in Life Sciences, 2018, 18, 40-47.	3.6	17
66	Predicting partition coefficients of multi-charged solutes in aqueous two-phase systems. Journal of Chromatography A, 1994, 668, 21-30.	3.7	15
67	Glucose can be transported and utilized in Escherichia coli by an altered or overproduced N-acetylglucosamine phosphotransferase system (PTS). Microbiology (United Kingdom), 2018, 164, 163-172.	1.8	15
68	Quercetin Glucoside Production by Engineered Escherichia coli. Applied Biochemistry and Biotechnology, 2017, 182, 1358-1370.	2.9	14
69	Synthesis of citramalic acid from glycerol by metabolically engineered <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1483-1490.	3.0	13
70	Coupling xylitol dehydrogenase with NADH oxidase improves l -xylulose production in Escherichia coli culture. Enzyme and Microbial Technology, 2017, 106, 106-113.	3.2	13
71	Analysis of oxonic acid, uric acid, creatine, allantoin, xanthine and hypoxanthine in poultry litter by reverse phase HPLC. Fresenius' Journal of Analytical Chemistry, 1994, 348, 680-683.	1.5	12
72	Microbial removal of acetate selectively from sugar mixtures. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1477-1484.	3.0	12

#	Article	IF	CITATIONS
73	Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase. Biotechnology Letters, 2003, 25, 1751-1755.	2.2	11
74	Effect of overexpressing nhaA and nhaR on sodium tolerance and lactate production in Escherichia coli. Journal of Biological Engineering, 2013, 7, 3.	4.7	11
75	A Model to Predict the Partition Coefficients of Amino Acids in PEG/Salt Aqueous Two-Phase Systems. Separation Science and Technology, 1995, 30, 225-237.	2.5	10
76	Conversion of glycerol to pyruvate by Escherichia coli using acetate- and acetate/glucose-limited fed-batch processes. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 307-312.	3.0	10
77	Differential sensitivities of the growth of Escherichia coli to acrylate under aerobic and anaerobic conditions and its effect on product formation. Biotechnology Letters, 2013, 35, 1839-1843.	2.2	10
78	Accumulation of <scp>d</scp> -Glucose from Pentoses by Metabolically Engineered Escherichia coli. Applied and Environmental Microbiology, 2015, 81, 3387-3394.	3.1	10
79	Isolation and Characterization of Bacteria That Use Furans as the Sole Carbon Source. Applied Biochemistry and Biotechnology, 2016, 178, 76-90.	2.9	10
80	Pretreatment and Detoxification of Acid-Treated Wood Hydrolysates for Pyruvate Production by an Engineered Consortium of Escherichia coli. Applied Biochemistry and Biotechnology, 2020, 192, 243-256.	2.9	10
81	Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli. Microbiology (United Kingdom), 2017, 163, 866-877.	1.8	10
82	Partitioning of Charged Solutes in Poly(Ethylene Glycol)/Potassium Phosphate Aqueous Two-Phase Systems. Separation Science and Technology, 1994, 29, 685-700.	2.5	8
83	Enhancement of NAD(H) pool for formation of oxidized biochemicals in <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2018, 45, 939-950.	3.0	8
84	Acetate formation during recombinant protein production in <i>Escherichia coli</i> Kâ€12 with an elevated NAD(H) pool. Engineering in Life Sciences, 2019, 19, 770-780.	3.6	8
85	Determination of monoclonal antibody concentration in cell culture by capture ELISA. Biotechnology Letters, 1989, 3, 401-406.	0.5	6
86	Heat capacity of the triglycerides: Tricaproin, tricaprylin and tricaprin. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 549-550.	1.9	6
87	Isolation and Characterization of Levoglucosan-Metabolizing Bacteria. Applied and Environmental Microbiology, 2022, 88, AEM0186821.	3.1	6
88	Phosphatases and phosphate affect the formation of glucose from pentoses in <i>Escherichia coli</i> . Engineering in Life Sciences, 2017, 17, 579-584.	3.6	5
89	Indirect monitoring of acetate exhaustion and cell recycle improve lactate production by non-growing Escherichia coli. Biotechnology Letters, 2008, 30, 1943-1946.	2.2	4
90	Effect of flue gas components on succinate production and CO2 fixation by metabolically engineered Escherichia coli. World Journal of Microbiology and Biotechnology, 2010, 26, 429-435.	3.6	4

#	Article	lF	CITATIONS
91	Hydrophobic and Charge Effects in the Partitioning of Solutes in Aqueous Two-Phase Systems. , 1995, , 31-48.		4
92	Anaerobic fermentation of Salmonella typhimurium with and without pyruvate carboxylase. Biotechnology Letters, 2001, 23, 111-117.	2.2	3
93	The pH Difference in Poly(Ethylene Glycol)/Citrate Aqueous Two-Phase Systems and the Influence of Sodium Chloride. Separation Science and Technology, 1995, 30, 2509-2518.	2.5	1
94	Predicting Partition Coefficients of Small Solutes Based on Hydrophobicity. , 2000, , 107-118.		1
95	Production of biomass and filamentous hemagglutinin by Bordetella bronchiseptica. Bioprocess and Biosystems Engineering, 2014, 37, 115-123.	3.4	1
96	In vivo interpretation of model predicted inhibition in acrylate pathway engineered Lactococcus lactis. Biotechnology and Bioengineering, 2020, 117, 3785-3798.	3.3	1
97	Bioprocessing Research. Applied Biochemistry and Biotechnology, 2003, 106, 317-318.	2.9	0