
Patrick C Mcgowan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5341657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heteroleptic iron(<scp>ii</scp>) complexes of chiral 2,6-bis(oxazolin-2-yl)-pyridine (PyBox) and 2,6-bis(thiazolin-2-yl)pyridine ligands – the interplay of two different ligands on the metal ion spin sate. Dalton Transactions, 2022, 51, 4262-4274.	1.6	6
2	Bis(bipyridine)ruthenium(II) Ferrocenyl βâ€Điketonate Complexes: Exhibiting Nanomolar Potency against Human Cancer Cell Lines. Chemistry - A European Journal, 2021, 27, 3737-3744.	1.7	15
3	Rhodium(III) Dihalido Complexes: The Effect of Ligand Substitution and Halido Coordination on Increasing Cancer Cell Potency. Inorganic Chemistry, 2021, 60, 2076-2086.	1.9	7
4	Bis(N â€picolinamido)cobalt(II) Complexes Display Antifungal Activity toward Candida albicans and Aspergillus fumigatus. ChemMedChem, 2021, 16, 3210-3221.	1.6	2
5	Spin-States of Diastereomeric Iron(II) Complexes of 2,6-Bis(thiazolin-2-yl)pyridine (ThioPyBox) Ligands and a Comparison with the Corresponding PyBox Derivatives. Inorganic Chemistry, 2021, 60, 14336-14348.	1.9	8
6	Bis(phenyl-β-diketonato)titanium(IV) ethoxide complexes: ring-opening polymerization of L-lactide by solvent-free microwave irradiation. Polyhedron, 2021, 211, 115520.	1.0	1
7	The facile and additive-free synthesis of a cell-friendly iron(<scp>iii</scp>)–glutathione complex. Dalton Transactions, 2020, 49, 10574-10579.	1.6	3
8	βâ€Điketonate versus βâ€Ketoiminate: The Importance of a Ferrocenyl Moiety in Improving the Anticancer Potency. ChemBioChem, 2020, 21, 1988-1996.	1.3	6
9	Anticancer, antifungal and antibacterial potential of bis(β-ketoiminato)ruthenium(II) carbonyl complexes. Inorganica Chimica Acta, 2019, 498, 119025.	1.2	6
10	Organometallic Iridium Arene Compounds: The Effects of <i>C</i> -Donor Ligands on Anticancer Activity. Chemistry Letters, 2019, 48, 916-924.	0.7	26
11	βâ€Ketoiminato Iridium(III) Organometallic Complexes: Selective Cytotoxicity towards Colorectal Cancer Cells HCT116 <i>p53</i> â€fâ€t Chemistry - A European Journal, 2019, 25, 495-500.	1.7	10
12	Bisâ€picolinamide Ruthenium(III) Dihalide Complexes: Dichlorideâ€toâ€Diiodide Exchange Generates Single <i>trans</i> Isomers with High Potency and Cancer Cell Selectivity. Chemistry - A European Journal, 2017, 23, 6341-6356.	1.7	20
13	Cytotoxic hydrogen bridged ruthenium quinaldamide complexes showing induced cancer cell death by apoptosis. Dalton Transactions, 2016, 45, 13196-13203.	1.6	11
14	<i>β</i> -Diketonate Titanium Compounds Exhibiting High In Vitro Activity and Specific DNA Base Binding. ChemistrySelect, 2016, 1, 6598-6605.	0.7	8
15	Structural studies of titanium(IV) picolinamide alkoxide and oxide derivatives. Polyhedron, 2016, 116, 136-143.	1.0	3
16	Green alternative solvents for the copper-catalysed arylation of phenols and amides. RSC Advances, 2016, 6, 70025-70032.	1.7	14
17	Increasing anti-cancer activity with longer tether lengths of group 9 Cp* complexes. Dalton Transactions, 2016, 45, 6812-6815.	1.6	34
18	Hypoxia-Sensitive Metal β-Ketoiminato Complexes Showing Induced Single-Strand DNA Breaks and Cancer Cell Death by Apoptosis. Journal of Medicinal Chemistry, 2015, 58, 4940-4953.	2.9	58

PATRICK C MCGOWAN

#	Article	IF	CITATIONS
19	A Giant Capsule from the Selfâ€Assembly of a Pentaâ€Telechelic Hybrid Poly(acrylic acid) Based on Polyhedral Oligomeric Silsesquioxane. Macromolecular Chemistry and Physics, 2014, 215, 900-905.	1.1	11
20	Mechanistic and Cytotoxicity Studies of Group IV βâ€Điketonate Complexes. ChemMedChem, 2014, 9, 1136-1139.	1.6	25
21	Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chemical Society Reviews, 2014, 43, 3525-3550.	18.7	899
22	Ruthenium Halide Complexes asN-Alkylation Catalysts. European Journal of Inorganic Chemistry, 2014, 2014, 1974-1983.	1.0	15
23	Rhodium, Iridium, and Ruthenium Half-Sandwich Picolinamide Complexes as Anticancer Agents. Inorganic Chemistry, 2014, 53, 727-736.	1.9	122
24	Picolinamides as Effective Ligands for Copperâ€Catalysed Aryl Ether Formation: Structure–Activity Relationships, Substrate Scope and Mechanistic Investigations. Chemistry - A European Journal, 2014, 20, 17606-17615.	1.7	25
25	A robust method to heterogenise and recycle group 9 catalysts. Chemical Communications, 2013, 49, 5562.	2.2	12
26	Synthesis and characterisation of tetramethylfulvene complexes of ruthenium. Dalton Transactions, 2013, 42, 16669.	1.6	8
27	Metallohelices with activity against cisplatin-resistant cancer cells; does the mechanism involve DNA binding?. Chemical Science, 2013, 4, 4407.	3.7	64
28	Synthesis of iridium and ruthenium complexes with (N,N), (N,O) and (O,O) coordinating bidentate ligands as potential anti-cancer agents. Dalton Transactions, 2012, 41, 13800.	1.6	80
29	The Combined Synthesis and Coloration of Poly(lactic acid). Angewandte Chemie - International Edition, 2011, 50, 291-294.	7.2	18
30	Backside Cover: The Combined Synthesis and Coloration of Poly(lactic acid) (Angew. Chem. Int. Ed.) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
31	Amide Linkage Isomerism As an Activity Switch for Organometallic Osmium and Ruthenium Anticancer Complexes. Journal of Medicinal Chemistry, 2009, 52, 7753-7764.	2.9	93
32	Synthesis, molecular structure and evaluation of new organometallic ruthenium anticancer agents. Dalton Transactions, 2009, , 10914.	1.6	45
33	Controlling the Coordination Mode of 1,4,7-Triazacyclononane Complexes of Rhodium and Iridium and Evaluating Their Behavior as Phenylacetylene Polymerization Catalysts. Organometallics, 2008, 27, 2852-2860.	1.1	13
34	29ÂÂMetal complexes as pharmaceuticals. Annual Reports on the Progress of Chemistry Section A, 2005, 101, 631.	0.8	3
35	Functionalized Cyclopentadienyl Titanium Organometallic Compounds as New Antitumor Drugs. Organometallics, 2004, 23, 288-292.	1.1	139
	Current and Church and Aming Functionalized Curles antedianal Manadium Completions and		

36Synthesis and Structure of Amino-Functionalized Cyclopentadienyl Vanadium Complexes and
Evaluation of Their Butadiene Polymerization Behavior. Organometallics, 2002, 21, 3443-3453.1.131

PATRICK C MCGOWAN

#	Article	IF	CITATIONS
37	Synthesis and Structural Studies of 1,1â€ [~] -Bis-Amino-Functionalized Ferrocenes, Ferrocene Salts, and Ferrocenium Salts. Inorganic Chemistry, 2002, 41, 715-726.	1.9	33
38	Pendant arm N-monofunctionalised 1,4,7-triazacyclononane complexes of Fe(ii) and Ru(ii). Dalton Transactions RSC, 2002, , 3619-3623.	2.3	8
39	Synthesis and reactivity of Group 14 substituted amino-functionalised cyclopentadienyl compounds. Journal of Organometallic Chemistry, 2002, 656, 49-56.	0.8	16
40	N-Monofunctionalized 1,4,7-Triazacyclononane Macrocycles as Building Blocks in Inorganic Crystal Engineering. Inorganic Chemistry, 2001, 40, 1445-1453.	1.9	35
41	A one-step synthesis of protected functionalised titanocene dichlorides. Inorganic Chemistry Communication, 2000, 3, 337-340.	1.8	31
42	Facile synthesis of amino-functionalised ferrocenes and vanadocenes. Chemical Communications, 1999, , 77-78.	2.2	18
43	Rhodium– and Tin–DNA Interactions and Applications. , 0, , 301-315.		1