Na Kyung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/534151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer's disease dementia: a phase I clinical trial. Alzheimer's Research and Therapy, 2021, 13, 154.	6.2	57
2	Anti-apoptotic Effects of Human Wharton's Jelly-derived Mesenchymal Stem Cells on Skeletal Muscle Cells Mediated via Secretion of XCL1. Molecular Therapy, 2016, 24, 1550-1560.	8.2	39
3	MHY2233 Attenuates Replicative Cellular Senescence in Human Endothelial Progenitor Cells <i>via</i> SIRT1 Signaling. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-18.	4.0	37
4	Distribution of human umbilical cord blood-derived mesenchymal stem cells in the Alzheimer's disease transgenic mouse after a single intravenous injection. NeuroReport, 2016, 27, 235-241.	1.2	33
5	Intra-Arterially Delivered Mesenchymal Stem Cells Are Not Detected in the Brain Parenchyma in an Alzheimer's Disease Mouse Model. PLoS ONE, 2016, 11, e0155912.	2.5	26
6	Magnetic Resonance Imaging of Ferumoxytol-Labeled Human Mesenchymal Stem Cells in the Mouse Brain. Stem Cell Reviews and Reports, 2017, 13, 127-138.	5.6	24
7	A Comparison of Immune Responses Exerted Following Syngeneic, Allogeneic, and Xenogeneic Transplantation of Mesenchymal Stem Cells into the Mouse Brain. International Journal of Molecular Sciences, 2020, 21, 3052.	4.1	23
8	Intrathecal Injection in a Rat Model: A Potential Route to Deliver Human Wharton's Jelly-Derived Mesenchymal Stem Cells into the Brain. International Journal of Molecular Sciences, 2020, 21, 1272.	4.1	22
9	Agouti Related Peptide Secreted Via Human Mesenchymal Stem Cells Upregulates Proteasome Activity in an Alzheimer's Disease Model. Scientific Reports, 2017, 7, 39340.	3.3	21
10	Distribution of human umbilical cord blood–derived mesenchymal stem cells (hUCB-MSCs) in canines after intracerebroventricular injection. Neurobiology of Aging, 2016, 47, 192-200.	3.1	20
11	Optimal mesenchymal stem cell delivery routes to enhance neurogenesis for the treatment of Alzheimer's disease: optimal MSCs delivery routes for the treatment of AD. Histology and Histopathology, 2018, 33, 533-541.	0.7	18
12	Decreased hemoglobin levels, cerebral small-vessel disease, and cortical atrophy: among cognitively normal elderly women and men. International Psychogeriatrics, 2016, 28, 147-156.	1.0	16
13	Cerebrospinal fluid from Alzheimer's disease patients as an optimal formulation for therapeutic application of mesenchymal stem cells in Alzheimer's disease. Scientific Reports, 2019, 9, 564.	3.3	15
14	Lowering the concentration affects the migration and viability of intracerebroventricular-delivered human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2017, 493, 751-757.	2.1	14
15	Cytoprotective Roles of a Novel Compound, MHY-1684, against Hyperglycemia-Induced Oxidative Stress and Mitochondrial Dysfunction in Human Cardiac Progenitor Cells. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	4.0	12
16	Killing two birds with one stone: The multifunctional roles of mesenchymal stem cells in the treatment of neurodegenerative and muscle diseases. Histology and Histopathology, 2018, 33, 629-638.	0.7	12
17	Ethionamide Preconditioning Enhances the Proliferation and Migration of Human Wharton's Jelly-Derived Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2020, 21, 7013.	4.1	11
18	Immunosuppressant Drugs Mitigate Immune Responses Generated by Human Mesenchymal Stem Cells Transplanted into the Mouse Parenchyma. Cell Transplantation, 2021, 30, 096368972110190.	2.5	11

Na Kyung Lee

#	Article	IF	CITATIONS
19	Social Event Memory Test (SEMT): A Video-based Memory Test for Predicting Amyloid Positivity for Alzheimer's Disease. Scientific Reports, 2018, 8, 10421.	3.3	6
20	Intracerebroventricular Administration of Human Umbilical Cord Blood—Derived Mesenchymal Stem Cells Induces Transient Inflammation in a Transgenic Mouse Model and Patients with Alzheimer's Disease. Biomedicines, 2022, 10, 563.	3.2	5
21	Exploring the Potential of Mesenchymal Stem Cell-Based Therapy in Mouse Models of Vascular Cognitive Impairment. International Journal of Molecular Sciences, 2020, 21, 5524.	4.1	2
22	Heterogeneous Disease Progression in a Mouse Model of Vascular Cognitive Impairment. International Journal of Molecular Sciences, 2020, 21, 2820.	4.1	2