
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5341379/publications.pdf Version: 2024-02-01



PEEN FEDRED

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Distance running stride-to-stride variability for sagittal plane joint angles. Sports Biomechanics, 2022, 21, 966-980.                                                                   | 0.8 | 3         |
| 2  | Is This the Real Life, or Is This Just Laboratory? A Scoping Review of IMU-Based Running Gait Analysis.<br>Sensors, 2022, 22, 1722.                                                      | 2.1 | 35        |
| 3  | Sex differences in the regularity and symmetry of gait in older adults with and without knee osteoarthritis. Gait and Posture, 2022, 95, 192-197.                                        | 0.6 | 4         |
| 4  | Predicting knee adduction moment response to gait retraining with minimal clinical data. PLoS<br>Computational Biology, 2022, 18, e1009500.                                              | 1.5 | 2         |
| 5  | A generalised smoothing approach for continuous, planar, inverse kinematics problems. Journal of<br>Biomechanics, 2022, 141, 111158.                                                     | 0.9 | 1         |
| 6  | Between-Day Reliability of Commonly Used IMU Features during a Fatiguing Run and the Effect of<br>Speed. Sensors, 2022, 22, 4129.                                                        | 2.1 | 1         |
| 7  | Estimation of kinematics from inertial measurement units using a combined deep learning and optimization framework. Journal of Biomechanics, 2021, 116, 110229.                          | 0.9 | 42        |
| 8  | Comparing the performance of Bayesian and least-squares approaches for inverse kinematics problems. Journal of Biomechanics, 2021, 126, 110597.                                          | 0.9 | 2         |
| 9  | Kinematic and Coordination Variability in Individuals With Acute and Chronic Patellofemoral Pain.<br>Journal of Applied Biomechanics, 2021, 37, 463-470.                                 | 0.3 | 3         |
| 10 | Evaluation of COVID-19 Restrictions on Distance Runners' Training Habits Using Wearable Trackers.<br>Frontiers in Sports and Active Living, 2021, 3, 812214.                             | 0.9 | 2         |
| 11 | Runners' Perspectives on â€~Smart' Wearable Technology and Its Use for Preventing Injury. International<br>Journal of Human-Computer Interaction, 2020, 36, 31-40.                       | 3.3 | 35        |
| 12 | A hierarchical cluster analysis to determine whether injured runners exhibit similar kinematic gait patterns. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 732-740. | 1.3 | 38        |
| 13 | Wearable activity trackers and mobilization after major head and neck cancer surgery: You can't improve what you don't measure. International Journal of Surgery, 2020, 84, 120-124.     | 1.1 | 7         |
| 14 | New Considerations for Collecting Biomechanical Data Using Wearable Sensors: The Effect of Different Running Environments. Frontiers in Bioengineering and Biotechnology, 2020, 8, 86.   | 2.0 | 18        |
| 15 | The effects of midfoot strike gait retraining on impact loading and joint stiffness. Physical Therapy in Sport, 2020, 42, 139-145.                                                       | 0.8 | 13        |
| 16 | Validity and reliability of a smartphone motion analysis app for lower limb kinematics during treadmill running. Physical Therapy in Sport, 2020, 43, 27-35.                             | 0.8 | 32        |
| 17 | Effects of iliotibial band syndrome on pain sensitivity and gait kinematics in female runners: A preliminary study. Clinical Biomechanics, 2020, 76, 105017.                             | 0.5 | 7         |
| 18 | Fatigue-Related Changes in Running Gait Patterns Persist in the Days Following a Marathon Race.<br>Journal of Sport Rehabilitation, 2020, 29, 934-941.                                   | 0.4 | 10        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Running patterns for male and female competitive and recreational runners based on accelerometer data. Journal of Sports Sciences, 2019, 37, 204-211.                                                                  | 1.0 | 57        |
| 20 | Risk Inference Models for Security Applications. , 2019, , .                                                                                                                                                           |     | 0         |
| 21 | New Considerations for Collecting Biomechanical Data Using Wearable Sensors: How Does<br>Inclination Influence the Number of Runs Needed to Determine a Stable Running Gait Pattern?.<br>Sensors, 2019, 19, 2516.      | 2.1 | 12        |
| 22 | The biomechanical difference between running with traditional and 3D printed orthoses. Journal of Sports Sciences, 2019, 37, 2191-2197.                                                                                | 1.0 | 21        |
| 23 | The effect of running speed on joint coupling coordination and its variability in recreational runners. Human Movement Science, 2019, 66, 449-458.                                                                     | 0.6 | 20        |
| 24 | Effects of Caffeine on Exertion, Skill Performance, and Physicality in Ice Hockey. International Journal of Sports Physiology and Performance, 2019, 14, 1422-1429.                                                    | 1.1 | 7         |
| 25 | Automated Accelerometer-Based Gait Event Detection During Multiple Running Conditions. Sensors, 2019, 19, 1483.                                                                                                        | 2.1 | 49        |
| 26 | Walking with head-mounted virtual and augmented reality devices: Effects on position control and gait biomechanics. PLoS ONE, 2019, 14, e0225972.                                                                      | 1,1 | 34        |
| 27 | New considerations for collecting biomechanical data using wearable sensors: Number of level runs<br>to define a stable running pattern with a single IMU. Journal of Biomechanics, 2019, 85, 187-192.                 | 0.9 | 24        |
| 28 | Subject-specific and group-based running pattern classification using a single wearable sensor.<br>Journal of Biomechanics, 2019, 84, 227-233.                                                                         | 0.9 | 36        |
| 29 | Validity of a novel method to measure vertical oscillation during running using a depth camera.<br>Journal of Biomechanics, 2019, 85, 182-186.                                                                         | 0.9 | 6         |
| 30 | Patellofemoral joint stress measured across three different running techniques. Gait and Posture, 2019, 68, 37-43.                                                                                                     | 0.6 | 34        |
| 31 | Classification of higher- and lower-mileage runners based on running kinematics. Journal of Sport and Health Science, 2019, 8, 249-257.                                                                                | 3.3 | 27        |
| 32 | New Considerations for Wearable Technology Data: Changes in Running Biomechanics During a<br>Marathon. Journal of Applied Biomechanics, 2019, 35, 401-409.                                                             | 0.3 | 30        |
| 33 | Classifying running speed conditions using a single wearable sensor: Optimal segmentation and feature extraction methods. Journal of Biomechanics, 2018, 71, 94-99.                                                    | 0.9 | 39        |
| 34 | The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Gait and Posture, 2018, 63, 124-138.                                                                        | 0.6 | 168       |
| 35 | Runners with patellofemoral pain demonstrate sub-groups of pelvic acceleration profiles using<br>hierarchical cluster analysis: an exploratory cross-sectional study. BMC Musculoskeletal Disorders,<br>2018, 19, 120. | 0.8 | 12        |
| 36 | The effect of foot orthoses on joint moment asymmetry in male children with flexible flat feet.<br>Journal of Bodywork and Movement Therapies, 2018, 22, 83-89.                                                        | 0.5 | 18        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effects of running experience on coordination and its variability in runners. Journal of Sports Sciences, 2018, 36, 272-278.                                                                       | 1.0 | 18        |
| 38 | Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions. Journal of Medical and Biological Engineering, 2018, 38, 244-260.                                                 | 1.0 | 114       |
| 39 | Gait Kinematics in Individuals with Acute and Chronic Patellofemoral Pain. Medicine and Science in Sports and Exercise, 2018, 50, 502-509.                                                         | 0.2 | 20        |
| 40 | Wearable Sensor Data to Track Subject-Specific Movement Patterns Related to Clinical Outcomes<br>Using a Machine Learning Approach. Sensors, 2018, 18, 2828.                                       | 2.1 | 31        |
| 41 | Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions. PLoS ONE, 2018, 13, e0203839.                        | 1.1 | 42        |
| 42 | Use of baseline pelvic acceleration during running for classifying response to muscle strengthening treatment in patellofemoral pain: A preliminary study. Clinical Biomechanics, 2018, 57, 74-80. | 0.5 | 5         |
| 43 | Treatment Success of Hip and Core or Knee Strengthening for Patellofemoral Pain: Development of<br>Clinical Prediction Rules. Journal of Athletic Training, 2018, 53, 545-552.                     | 0.9 | 11        |
| 44 | Kinematic Gait Patterns in Competitive and Recreational Runners. Journal of Applied Biomechanics, 2017, 33, 268-276.                                                                               | 0.3 | 39        |
| 45 | Wearable sensors to predict response to a hip strengthening exercise intervention in patients with knee osteoarthritis. Osteoarthritis and Cartilage, 2017, 25, S23-S24.                           | 0.6 | 4         |
| 46 | Individuals With Patellofemoral Pain Have Less Hip Flexibility Than Controls Regardless of Treatment<br>Outcome. Clinical Journal of Sport Medicine, 2017, 27, 97-103.                             | 0.9 | 16        |
| 47 | The use of real-time feedback to improve kinematic marker placement consistency among novice examiners. Gait and Posture, 2017, 58, 440-445.                                                       | 0.6 | 2         |
| 48 | An expert system feedback tool improves the reliability of clinical gait kinematics for older adults with lower limb osteoarthritis. Gait and Posture, 2017, 58, 261-267.                          | 0.6 | 2         |
| 49 | Fuzzy Inference System-based Recognition of Slow, Medium and Fast Running Conditions using a<br>Triaxial Accelerometer. Procedia Computer Science, 2017, 114, 401-407.                             | 1.2 | 18        |
| 50 | Lasting Improvement of Patient-Reported Outcomes 6 Months After Patellofemoral Pain<br>Rehabilitation. Journal of Sport Rehabilitation, 2017, 26, 223-233.                                         | 0.4 | 10        |
| 51 | Wearable sensors to predict improvement following an exercise intervention in patients with knee osteoarthritis. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 94.                     | 2.4 | 28        |
| 52 | Effects of Simulated Marker Placement Deviations on Running Kinematics and Evaluation of a Morphometric-Based Placement Feedback Method. PLoS ONE, 2016, 11, e0147111.                             | 1.1 | 24        |
| 53 | Kernel Principal Component Analysis for Identification of Between-Group Differences and Changes in<br>Running Gait Patterns. IFMBE Proceedings, 2016, , 586-591.                                   | 0.2 | 2         |
| 54 | Biomechanical Features of Running Gait Data Associated with Iliotibial Band Syndrome: Discrete<br>Variables Versus Principal Component Analysis. IFMBE Proceedings, 2016, , 580-585.               | 0.2 | 3         |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Kinematic gait patterns and their relationship to pain in mild-to-moderate hip osteoarthritis. Clinical<br>Biomechanics, 2016, 34, 12-17.                                                                                                   | 0.5 | 29        |
| 56 | Gender differences in gait kinematics for patients with knee osteoarthritis. BMC Musculoskeletal<br>Disorders, 2016, 17, 157.                                                                                                               | 0.8 | 91        |
| 57 | Relationship between lower limb muscle strength, self-reported pain and function, and frontal plane gait kinematics in knee osteoarthritis. Clinical Biomechanics, 2016, 38, 68-74.                                                         | 0.5 | 21        |
| 58 | Determination of patellofemoral pain sub-groups and development of a method for predicting treatment outcome using running gait kinematics. Clinical Biomechanics, 2016, 38, 13-21.                                                         | 0.5 | 30        |
| 59 | Validation of a Torso-Mounted Accelerometer for Measures of Vertical Oscillation and Ground<br>Contact Time During Treadmill Running. Journal of Applied Biomechanics, 2016, 32, 306-310.                                                   | 0.3 | 24        |
| 60 | Reliability of gait analysis using wearable sensors in patients with knee osteoarthritis. Journal of<br>Biomechanics, 2016, 49, 3977-3982.                                                                                                  | 0.9 | 26        |
| 61 | Gait biomechanics in the era of data science. Journal of Biomechanics, 2016, 49, 3759-3761.                                                                                                                                                 | 0.9 | 75        |
| 62 | A comparison of different over-the-counter foot orthotic devices on multi-segment foot biomechanics. Prosthetics and Orthotics International, 2016, 40, 675-681.                                                                            | 0.5 | 10        |
| 63 | Effects of strengthening and stretching exercise programmes on kinematics and kinetics of running in older adults: a randomised controlled trial. Journal of Sports Sciences, 2016, 34, 1774-1781.                                          | 1.0 | 4         |
| 64 | Predicting ground contact events for a continuum of gait types: An application of targeted machine<br>learning using principal component analysis. Gait and Posture, 2016, 46, 86-90.                                                       | 0.6 | 28        |
| 65 | PAIN, FUNCTION, AND STRENGTH OUTCOMES FOR MALES AND FEMALES WITH PATELLOFEMORAL PAIN WHO<br>PARTICIPATE IN EITHER A HIP/CORE- OR KNEE-BASED REHABILITATION PROGRAM. International Journal of<br>Sports Physical Therapy, 2016, 11, 926-935. | 0.5 | 13        |
| 66 | Changes in Foot Pronation Biomechanics From a Walk to a Run. Medicine and Science in Sports and Exercise, 2015, 47, 817-823.                                                                                                                | 0.2 | 0         |
| 67 | Gait Biomechanics and Patient-Reported Function as Predictors of Response to a Hip Strengthening<br>Exercise Intervention in Patients with Knee Osteoarthritis. PLoS ONE, 2015, 10, e0139923.                                               | 1.1 | 32        |
| 68 | Gender differences in gait kinematics in runners with iliotibial band syndrome. Scandinavian Journal<br>of Medicine and Science in Sports, 2015, 25, 744-753.                                                                               | 1.3 | 46        |
| 69 | Experimentally Reduced Hip-Abductor Muscle Strength and Frontal-Plane Biomechanics During<br>Walking. Journal of Athletic Training, 2015, 50, 385-391.                                                                                      | 0.9 | 24        |
| 70 | Do intermediate- and higher-order principal components contain useful information to detect subtle<br>changes in lower extremity biomechanics during running?. Human Movement Science, 2015, 44, 91-101.                                    | 0.6 | 38        |
| 71 | Kinematic gait patterns in healthy runners: A hierarchical cluster analysis. Journal of Biomechanics, 2015, 48, 3897-3904.                                                                                                                  | 0.9 | 66        |
| 72 | A novel method to evaluate error in anatomical marker placement using a modified generalized<br>Procrustes analysis. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1108-1116.                                      | 0.9 | 23        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The effect of the addition of hip strengthening exercises to a lumbopelvic exercise programme for the treatment of non-specific low back pain: A randomized controlled trial. Journal of Science and Medicine in Sport, 2015, 18, 626-631. | 0.6 | 31        |
| 74 | Comparison of hip and knee strength in males with and without patellofemoral pain. Physical Therapy in Sport, 2015, 16, 215-221.                                                                                                           | 0.8 | 33        |
| 75 | Strengthening of the Hip and Core Versus Knee Muscles for the Treatment of Patellofemoral Pain: A<br>Multicenter Randomized Controlled Trial. Journal of Athletic Training, 2015, 50, 366-377.                                             | 0.9 | 129       |
| 76 | Gender and Age-Related Differences in Bilateral Lower Extremity Mechanics during Treadmill Running.<br>PLoS ONE, 2014, 9, e105246.                                                                                                         | 1.1 | 66        |
| 77 | Classification accuracy of a single tri-axial accelerometer for training background and experience<br>level in runners. Journal of Biomechanics, 2014, 47, 2508-2511.                                                                      | 0.9 | 31        |
| 78 | The effect of land-based exercise on pain and function outcomes in hip osteoarthritis: a systematic review and meta-analysis. Osteoarthritis and Cartilage, 2014, 22, S21.                                                                 | 0.6 | 1         |
| 79 | Does tester experience influence the reliability with which 3D gait kinematics are collected in healthy adults?. Physical Therapy in Sport, 2014, 15, 112-116.                                                                             | 0.8 | 18        |
| 80 | Flexibility, muscle strength and running biomechanical adaptations in older runners. Clinical Biomechanics, 2014, 29, 304-310.                                                                                                             | 0.5 | 56        |
| 81 | Predicting timing of foot strike during running, independent of striking technique, using principal component analysis of joint angles. Journal of Biomechanics, 2014, 47, 2786-2789.                                                      | 0.9 | 21        |
| 82 | Association of Navicular Drop and Selected Lower-Limb Biomechanical Measures During the Stance<br>Phase of Running. Journal of Applied Biomechanics, 2014, 30, 250-254.                                                                    | 0.3 | 18        |
| 83 | No evidence of a consistent alteration in the external knee adduction moment during gait in individuals with knee osteoarthritis: a systematic review and meta-analysis. Osteoarthritis and Cartilage, 2013, 21, S94.                      | 0.6 | 0         |
| 84 | Between-Limb Kinematic Asymmetry During Gait in Unilateral and Bilateral Mild to Moderate Knee<br>Osteoarthritis. Archives of Physical Medicine and Rehabilitation, 2013, 94, 2241-2247.                                                   | 0.5 | 67        |
| 85 | Biomechanical Deviations During Level Walking Associated With Knee Osteoarthritis: A Systematic<br>Review and Metaâ€Analysis. Arthritis Care and Research, 2013, 65, 1643-1665.                                                            | 1.5 | 141       |
| 86 | Can orthoses and navicular drop affect foot motion patterns during running?. Journal of Science and<br>Medicine in Sport, 2013, 16, 377-381.                                                                                               | 0.6 | 10        |
| 87 | Gait biomechanics and hip muscular strength in patients with patellofemoral osteoarthritis. Gait and Posture, 2013, 37, 440-444.                                                                                                           | 0.6 | 44        |
| 88 | A systematic review and meta-analysis of lower limb neuromuscular alterations associated with knee osteoarthritis during level walking. Clinical Biomechanics, 2013, 28, 713-724.                                                          | 0.5 | 61        |
| 89 | Validation of Plantar Pressure Measurements for a Novel in-Shoe Plantar Sensory Replacement Unit.<br>Journal of Diabetes Science and Technology, 2013, 7, 1167-1175.                                                                       | 1.3 | 34        |
| 90 | Steps Toward the Validation of the Trendelenburg Test. Clinical Journal of Sport Medicine, 2013, 23, 45-51.                                                                                                                                | 0.9 | 35        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Bone Quality and Muscle Strength in Female Athletes with Lower Limb Stress Fractures. Medicine and Science in Sports and Exercise, 2011, 43, 2110-2119.                                     | 0.2 | 82        |
| 92  | Changes in Knee Biomechanics After a Hip-Abductor Strengthening Protocol for Runners With<br>Patellofemoral Pain Syndrome. Journal of Athletic Training, 2011, 46, 142-149.                 | 0.9 | 158       |
| 93  | Changes in multiâ€segment foot biomechanics with a heatâ€mouldable semiâ€custom foot orthotic device.<br>Journal of Foot and Ankle Research, 2011, 4, 18.                                   | 0.7 | 31        |
| 94  | Changes in joint coupling and variability during walking following tibialis posterior muscle fatigue.<br>Journal of Foot and Ankle Research, 2011, 4, 6.                                    | 0.7 | 36        |
| 95  | Support vector machines for detecting age-related changes in running kinematics. Journal of Biomechanics, 2011, 44, 540-542.                                                                | 0.9 | 52        |
| 96  | Biomechanical and Clinical Factors Related to Stage I Posterior Tibial Tendon Dysfunction. Journal of<br>Orthopaedic and Sports Physical Therapy, 2011, 41, 776-784.                        | 1.7 | 52        |
| 97  | Normative and Critical Criteria for Iliotibial Band and Iliopsoas Muscle Flexibility. Journal of Athletic<br>Training, 2010, 45, 344-348.                                                   | 0.9 | 51        |
| 98  | The Relationship Between Hip-Abductor Strength and the Magnitude of Pelvic Drop in Patients With<br>Low Back Pain. Journal of Sport Rehabilitation, 2010, 19, 422-435.                      | 0.4 | 58        |
| 99  | The role of tibialis posterior fatigue on foot kinematics during walking. Journal of Foot and Ankle<br>Research, 2010, 3, 6.                                                                | 0.7 | 30        |
| 100 | Competitive Female Runners With a History of Iliotibial Band Syndrome Demonstrate Atypical Hip and<br>Knee Kinematics. Journal of Orthopaedic and Sports Physical Therapy, 2010, 40, 52-58. | 1.7 | 211       |
| 101 | Can the reliability of three-dimensional running kinematics be improved using functional joint methodology?. Gait and Posture, 2010, 32, 559-563.                                           | 0.6 | 82        |
| 102 | Suspected Mechanisms in the Cause of Overuse Running Injuries: A Clinical Review. Sports Health, 2009, 1, 242-246.                                                                          | 1.3 | 88        |
| 103 | Gait mechanics after ACL reconstruction: implications for the early onset of knee osteoarthritis.<br>British Journal of Sports Medicine, 2009, 43, 366-370.                                 | 3.1 | 155       |
| 104 | Gender Differences In Gait Mechanics Following an ACL Rupture: Implications For Early Onset Knee<br>Osteoarthritis In Females. Medicine and Science in Sports and Exercise, 2008, 40, S338. | 0.2 | 1         |
| 105 | Gait Mechanics Following an ACL rupture: Implication for the Early Onset of Knee Osteoarthritis.<br>Medicine and Science in Sports and Exercise, 2008, 40, S58.                             | 0.2 | 1         |
| 106 | Effect of an unstable shoe construction on lower extremity gait characteristics. Clinical Biomechanics, 2006, 21, 82-88.                                                                    | 0.5 | 229       |
| 107 | Biomechanical Factors Associated with Tibial Stress Fracture in Female Runners. Medicine and Science in Sports and Exercise, 2006, 38, 323-328.                                             | 0.2 | 624       |
| 108 | Effect of foot orthotics on rearfoot and tibia joint coupling patterns and variability. Journal of Biomechanics, 2005, 38, 477-483.                                                         | 0.9 | 88        |

| #   | Article                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Bilateral accommodations to anterior cruciate ligament deficiency and surgery. Clinical<br>Biomechanics, 2004, 19, 136-144.                                        | 0.5 | 45        |
| 110 | Lower extremity joint coupling during running: a current update. Clinical Biomechanics, 2004, 19, 983-991.                                                         | 0.5 | 120       |
| 111 | Gender differences in lower extremity mechanics during running. Clinical Biomechanics, 2003, 18, 350-357.                                                          | 0.5 | 513       |
| 112 | Gait mechanics in chronic ACL deficiency and subsequent repair. Clinical Biomechanics, 2002, 17, 274-285.                                                          | 0.5 | 119       |
| 113 | An Electromyographical Analysis of the Role of Dorsiflexors on the Gait Transition during Human<br>Locomotion. Journal of Applied Biomechanics, 2001, 17, 287-296. | 0.3 | 34        |