
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5341166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Vulnerable Plaque to Vulnerable Patient. Circulation, 2003, 108, 1664-1672.	1.6	2,308
2	From Vulnerable Plaque to Vulnerable Patient. Circulation, 2003, 108, 1772-1778.	1.6	1,562
3	In Vivo Accuracy of Multispectral Magnetic Resonance Imaging for Identifying Lipid-Rich Necrotic Cores and Intraplaque Hemorrhage in Advanced Human Carotid Plaques. Circulation, 2001, 104, 2051-2056.	1.6	729
4	Classification of Human Carotid Atherosclerotic Lesions With In Vivo Multicontrast Magnetic Resonance Imaging. Circulation, 2002, 106, 1368-1373.	1.6	702
5	Association Between Carotid Plaque Characteristics and Subsequent Ischemic Cerebrovascular Events. Stroke, 2006, 37, 818-823.	1.0	691
6	Visualization of Fibrous Cap Thickness and Rupture in Human Atherosclerotic Carotid Plaque In Vivo With High-Resolution Magnetic Resonance Imaging. Circulation, 2000, 102, 959-964.	1.6	573
7	Presence of Intraplaque Hemorrhage Stimulates Progression of Carotid Atherosclerotic Plaques. Circulation, 2005, 111, 2768-2775.	1.6	518
8	In Vivo Quantitative Measurement of Intact Fibrous Cap and Lipid-Rich Necrotic Core Size in Atherosclerotic Carotid Plaque. Circulation, 2005, 112, 3437-3444.	1.6	481
9	Vascular dysfunction—The disregarded partner of Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 158-167.	0.4	454
10	Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions. Radiology, 2001, 221, 285-299.	3.6	439
11	Identification of Fibrous Cap Rupture With Magnetic Resonance Imaging Is Highly Associated With Recent Transient Ischemic Attack or Stroke. Circulation, 2002, 105, 181-185.	1.6	425
12	Hemorrhage in the Atherosclerotic Carotid Plaque: A High-Resolution MRI Study. Stroke, 2004, 35, 1079-1084.	1.0	400
13	Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. Journal of Magnetic Resonance Imaging, 2002, 15, 62-67.	1.9	382
14	Quantitative Magnetic Resonance Imaging Analysis of Neovasculature Volume in Carotid Atherosclerotic Plaque. Circulation, 2003, 107, 851-856.	1.6	340
15	The Vulnerable, or High-Risk, Atherosclerotic Plaque: Noninvasive MR Imaging for Characterization and Assessment. Radiology, 2007, 244, 64-77.	3.6	312
16	Measurement of Atherosclerotic Carotid Plaque Size In Vivo Using High Resolution Magnetic Resonance Imaging. Circulation, 1998, 98, 2666-2671.	1.6	285
17	Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications. Lancet Neurology, The, 2019, 18, 559-572.	4.9	279
18	Inflammation in Carotid Atherosclerotic Plaque: A Dynamic Contrast-enhanced MR Imaging Study. Radiology, 2006, 241, 459-468.	3.6	275

#	Article	IF	CITATIONS
19	Effects of Prolonged Intensive Lipid-Lowering Therapy on the Characteristics of Carotid Atherosclerotic Plaques In Vivo by MRI. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1623-1629.	1.1	266
20	MR angiography by multiple thin slab 3D acquisition. Magnetic Resonance in Medicine, 1991, 17, 434-451.	1.9	265
21	Meta-Analysis and Systematic Review of the Predictive Value of Carotid Plaque Hemorrhage on Cerebrovascular Events by Magnetic Resonance Imaging. Journal of the American College of Cardiology, 2013, 62, 1081-1091.	1.2	259
22	Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: A high-resolution magnetic resonance imaging trial. American Heart Journal, 2008, 155, 584.e1-584.e8.	1.2	223
23	Plaque Rupture in the Carotid Artery Is Localized at the High Shear Stress Region. Stroke, 2007, 38, 2379-2381.	1.0	212
24	Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo. Nature Medicine, 1995, 1, 69-73.	15.2	207
25	Improved suppression of plaqueâ€mimicking artifacts in blackâ€blood carotid atherosclerosis imaging using a multislice motionâ€sensitized drivenâ€equilibrium (MSDE) turbo spinâ€echo (TSE) sequence. Magnetic Resonance in Medicine, 2007, 58, 973-981.	1.9	199
26	3D MRI-Based Multicomponent FSI Models for Atherosclerotic Plaques. Annals of Biomedical Engineering, 2004, 32, 947-960.	1.3	196
27	Comparison of Symptomatic and Asymptomatic Atherosclerotic Carotid Plaque Features with in Vivo MR Imaging. Radiology, 2006, 240, 464-472.	3.6	188
28	Magnetic Resonance Imaging of Carotid Atherosclerosis. Topics in Magnetic Resonance Imaging, 2007, 18, 371-378.	0.7	188
29	Carotid Intraplaque Hemorrhage Imaging at 3.0-T MR Imaging: Comparison of the Diagnostic Performance of Three T1-weighted Sequences. Radiology, 2010, 254, 551-563.	3.6	179
30	Multicontrast High-Resolution Vessel Wall Magnetic Resonance Imaging and Its Value in Differentiating Intracranial Vasculopathic Processes. Stroke, 2015, 46, 1567-1573.	1.0	173
31	Prevalence of Nonstenosing, Complicated Atherosclerotic Plaques in Cryptogenic Stroke. JACC: Cardiovascular Imaging, 2012, 5, 397-405.	2.3	171
32	Sites of Rupture in Human Atherosclerotic Carotid Plaques Are Associated With High Structural Stresses. Stroke, 2009, 40, 3258-3263.	1.0	165
33	Enhanced image quality in blackâ€blood MRI using the improved motionâ€sensitized drivenâ€equilibrium (iMSDE) sequence. Journal of Magnetic Resonance Imaging, 2010, 31, 1256-1263.	1.9	155
34	Surface coil phased arrays for high-resolution imaging of the carotid arteries. Journal of Magnetic Resonance Imaging, 1996, 6, 109-112.	1.9	149
35	MRI of carotid atherosclerosis: clinical implications and future directions. Nature Reviews Cardiology, 2010, 7, 165-173.	6.1	143
36	MR Imaging of Carotid Plaque Composition During Lipid-Lowering Therapy. JACC: Cardiovascular Imaging, 2011, 4, 977-986.	2.3	140

#	Article	IF	CITATIONS
37	Carotid plaque assessment using fast 3D isotropic resolution blackâ€blood MRI. Magnetic Resonance in Medicine, 2011, 65, 627-637.	1.9	135
38	MRI of atherosclerosis in clinical trials. NMR in Biomedicine, 2006, 19, 636-654.	1.6	124
39	MRI of atherosclerosis. Journal of Magnetic Resonance Imaging, 2004, 19, 710-719.	1.9	123
40	Multicontrast black-blood MRI of carotid arteries: Comparison between 1.5 and 3 tesla magnetic field strengths. Journal of Magnetic Resonance Imaging, 2006, 23, 691-698.	1.9	122
41	T1-insensitive flow suppression using quadruple inversion-recovery. Magnetic Resonance in Medicine, 2002, 48, 899-905.	1.9	118
42	Sustained Acceleration in Carotid Atherosclerotic Plaque Progression With Intraplaque Hemorrhage. JACC: Cardiovascular Imaging, 2012, 5, 798-804.	2.3	118
43	Prevalence of American Heart Association Type VI Carotid Atherosclerotic Lesions Identified by Magnetic Resonance Imaging for Different Levels of Stenosis as Measured by Duplex Ultrasound. Journal of the American College of Cardiology, 2008, 51, 1014-1021.	1.2	116
44	Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom. Magnetic Resonance in Medicine, 2018, 79, 48-61.	1.9	116
45	Simultaneous noncontrast angiography and intraPlaque hemorrhage (SNAP) imaging for carotid atherosclerotic disease evaluation. Magnetic Resonance in Medicine, 2013, 69, 337-345.	1.9	115
46	Closed contour edge detection of blood vessel lumen and outer wall boundaries in black-blood MR images. Magnetic Resonance Imaging, 1999, 17, 257-266.	1.0	113
47	Predictors of carotid atherosclerotic plaque progression as measured by noninvasive magnetic resonance imaging. Atherosclerosis, 2007, 194, e34-e42.	0.4	113
48	In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: Proton echo planar spectroscopic imaging (PEPSI). Magnetic Resonance in Medicine, 1997, 37, 858-865.	1.9	110
49	Multislice double inversion-recovery black-blood imaging with simultaneous slice reinversion. Journal of Magnetic Resonance Imaging, 2003, 17, 478-483.	1.9	110
50	Local Maximal Stress Hypothesis and Computational Plaque Vulnerability Index for Atherosclerotic Plaque Assessment. Annals of Biomedical Engineering, 2005, 33, 1789-1801.	1.3	108
51	Vascular contributions to cognitive impairment and dementia (VCID): A report from the 2018 National Heart, Lung, and Blood Institute and National Institute of Neurological Disorders and Stroke Workshop. Alzheimer's and Dementia, 2020, 16, 1714-1733.	0.4	108
52	High-resolution intracranial vessel wall imaging: imaging beyond the lumen. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 589-597.	0.9	104
53	Automated in vivo segmentation of carotid plaque MRI with Morphology-Enhanced probability maps. Magnetic Resonance in Medicine, 2006, 55, 659-668.	1.9	97
54	Intra- and interreader reproducibility of magnetic resonance imaging for quantifying the lipid-rich necrotic core is improved with gadolinium contrast enhancement. Journal of Magnetic Resonance Imaging, 2006, 24, 203-210.	1.9	91

#	Article	IF	CITATIONS
55	Added Value of Vessel Wall Magnetic Resonance Imaging in the Differentiation of Moyamoya Vasculopathies in a Non-Asian Cohort. Stroke, 2016, 47, 1782-1788.	1.0	85
56	Analysis of the measurement precision of arterial lumen and wall areas using high-resolution MRI. Magnetic Resonance in Medicine, 2000, 44, 968-972.	1.9	83
57	Comparison between 2D and 3D highâ€resolution blackâ€blood techniques for carotid artery wall imaging in clinically significant atherosclerosis. Journal of Magnetic Resonance Imaging, 2008, 27, 918-924.	1.9	83
58	Added Value of Vessel Wall Magnetic Resonance Imaging for Differentiation of Nonocclusive Intracranial Vasculopathies. Stroke, 2017, 48, 3026-3033.	1.0	83
59	Carotid Plaque Lipid Content and Fibrous Cap Status Predict Systemic CV Outcomes. JACC: Cardiovascular Imaging, 2017, 10, 241-249.	2.3	82
60	Carotid Artery Atherosclerosis: Effect of Intensive Lipid Therapy on the Vasa Vasorum—Evaluation by Using Dynamic Contrast-enhanced MR Imaging. Radiology, 2011, 260, 224-231.	3.6	77
61	Arterial Remodeling in the Subclinical Carotid Artery Disease. JACC: Cardiovascular Imaging, 2009, 2, 1381-1389.	2.3	76
62	Scanâ€rescan reproducibility of carotid atherosclerotic plaque morphology and tissue composition measurements using multicontrast MRI at 3T. Journal of Magnetic Resonance Imaging, 2010, 31, 168-176.	1.9	72
63	3D Critical Plaque Wall Stress Is a Better Predictor of Carotid Plaque Rupture Sites Than Flow Shear Stress: An In Vivo MRI-Based 3D FSI Study. Journal of Biomechanical Engineering, 2010, 132, 031007.	0.6	72
64	Automated measurement of mean wall thickness in the common carotid artery by MRI: A comparison to intima-media thickness by B-mode ultrasound. Journal of Magnetic Resonance Imaging, 2006, 24, 379-387.	1.9	71
65	Phased-Array Magnetic Resonance Imaging of the Carotid Artery Bifurcation: Preliminary Results in Healthy Volunteers and a Patient with Aherosclerotic Disease. Journal of Magnetic Resonance Imaging, 1995, 5, 561-565.	1.9	70
66	Prevalence and Characteristics of Carotid Artery Highâ€Risk Atherosclerotic Plaques in Chinese Patients With Cerebrovascular Symptoms: A Chinese Atherosclerosis Risk Evaluation II Study. Journal of the American Heart Association, 2017, 6, .	1.6	70
67	Ferritin Overexpression for Noninvasive Magnetic Resonance Imaging–Based Tracking of Stem Cells Transplanted into the Heart. Molecular Imaging, 2010, 9, 7290.2010.00020.	0.7	68
68	Discriminating Carotid Atherosclerotic Lesion Severity by Luminal Stenosis and Plaque Burden. Stroke, 2011, 42, 347-353.	1.0	67
69	Sex Differences in Patients With Asymptomatic Carotid Atherosclerotic Plaque. Stroke, 2010, 41, 1630-1635.	1.0	65
70	Advanced human carotid plaque progression correlates positively with flow shear stress using follow-up scan data: An in vivo MRI multi-patient 3D FSI study. Journal of Biomechanics, 2010, 43, 2530-2538.	0.9	64
71	Development of a quantitative intracranial vascular features extraction tool on 3 <scp>D</scp> <scp>MRA</scp> using semiautomated open urve active contour vessel tracing. Magnetic Resonance in Medicine, 2018, 79, 3229-3238.	1.9	64
72	Complicated Carotid Artery Plaques as a Cause of Cryptogenic Stroke. Journal of the American College of Cardiology, 2020, 76, 2212-2222.	1.2	64

#	Article	IF	CITATIONS
73	Evaluation of 3D multi-contrast joint intra- and extracranial vessel wall cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 41.	1.6	62
74	Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI. Magnetic Resonance in Medicine, 2016, 75, 831-838.	1.9	61
75	Ultrasound-Based Carotid Elastography for Detection ofÂVulnerable Atherosclerotic Plaques Validated by MagneticÂResonance Imaging. Ultrasound in Medicine and Biology, 2016, 42, 365-377.	0.7	61
76	Vessel wall imaging for intracranial vascular disease evaluation. Journal of NeuroInterventional Surgery, 2016, 8, 1154-1159.	2.0	60
77	Atherosclerotic Plaque Progression in Carotid Arteries: Monitoring with High-Spatial-Resolution MR Imaging—Multicenter Trial. Radiology, 2009, 252, 789-796.	3.6	59
78	Subclinical Carotid Atherosclerosis: Short-term Natural History of Lipid-rich Necrotic Core—A Multicenter Study with MR Imaging. Radiology, 2013, 268, 61-68.	3.6	59
79	Prediction of High-Risk Plaque Development and Plaque Progression With the Carotid Atherosclerosis Score. JACC: Cardiovascular Imaging, 2014, 7, 366-373.	2.3	59
80	Image-based modeling for better understanding and assessment of atherosclerotic plaque progression and vulnerability: Data, modeling, validation, uncertainty and predictions. Journal of Biomechanics, 2014, 47, 834-846.	0.9	59
81	Accuracy and uniqueness of three in vivo measurements of atherosclerotic carotid plaque morphology with black blood MRI. Magnetic Resonance in Medicine, 2003, 50, 75-82.	1.9	58
82	Association of carotid atherosclerotic plaque features with acute ischemic stroke: A magnetic resonance imaging study. European Journal of Radiology, 2013, 82, e465-e470.	1.2	58
83	Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study. International Journal of Cardiovascular Imaging, 2015, 31, 95-103.	0.7	58
84	Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study. BioMedical Engineering OnLine, 2009, 8, 15.	1.3	57
85	Improvements in carotid plaque imaging using a new eightâ€element phased array coil at 3T. Journal of Magnetic Resonance Imaging, 2009, 30, 1209-1214.	1.9	55
86	A multi-scale method for automatic correction of intensity non-uniformity in MR images. Journal of Magnetic Resonance Imaging, 2001, 13, 428-436.	1.9	54
87	MRI of carotid atherosclerosis. Journal of Nuclear Cardiology, 2008, 15, 266-275.	1.4	53
88	The association of lesion eccentricity with plaque morphology and components in the superficial femoral artery: a high-spatial-resolution, multi-contrast weighted CMR study. Journal of Cardiovascular Magnetic Resonance, 2010, 12, 37.	1.6	53
89	In Vitro and In Situ Magnetic Resonance Imaging Signal Features of Atherosclerotic Plaque-Associated Lipids. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 1496-1503.	1.1	52
90	High resolution carotid black-blood 3T MR with parallel imaging and dedicated 4-channel surface coils. Journal of Cardiovascular Magnetic Resonance, 2009, 11, 41.	1.6	51

#	Article	IF	CITATIONS
91	Co-existing intracranial and extracranial carotid artery atherosclerotic plaques and recurrent stroke risk: a three-dimensional multicontrast cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 90.	1.6	49
92	Chinese Atherosclerosis Risk Evaluation (CARE II) study: a novel cross-sectional, multicentre study of the prevalence of high-risk atherosclerotic carotid plaque in Chinese patients with ischaemic cerebrovascular events—design and rationale. Stroke and Vascular Neurology, 2017, 2, 15-20.	1.5	49
93	Intracranial aneurysms at higher clinical risk for rupture demonstrate increased wall enhancement and thinning on multicontrast 3D vessel wall MRI. British Journal of Radiology, 2019, 92, 20180950.	1.0	47
94	Reader and platform reproducibility for quantitative assessment of carotid atherosclerotic plaque using 1.5T Siemens, Philips, and General Electric scanners. Journal of Magnetic Resonance Imaging, 2007, 26, 344-352.	1.9	45
95	Improved carotid intraplaque hemorrhage imaging using a slabâ€selective phaseâ€sensitive inversionâ€recovery (SPI) sequence. Magnetic Resonance in Medicine, 2010, 64, 1332-1340.	1.9	45
96	Adventitial Perfusion and Intraplaque Hemorrhage. Stroke, 2013, 44, 1031-1036.	1.0	45
97	Cardiac Magnetic Resonance Features of the Disruption-Prone and the Disrupted Carotid Plaque. JACC: Cardiovascular Imaging, 2009, 2, 883-896.	2.3	44
98	A standard system phantom for magnetic resonance imaging. Magnetic Resonance in Medicine, 2021, 86, 1194-1211.	1.9	44
99	Assessment of Carotid Artery Atherosclerotic Disease by Using Three-dimensional Fast Black-Blood MR Imaging: Comparison with DSA. Radiology, 2015, 274, 508-516.	3.6	40
100	POCSâ€enhanced inherent correction of motionâ€induced phase errors (POCSâ€iCE) for highâ€resolution multishot diffusion MRI. Magnetic Resonance in Medicine, 2016, 75, 169-180.	1.9	40
101	Plaque Composition in the Proximal Superficial Femoral Artery and PeripheralÂArtery Disease Events. JACC: Cardiovascular Imaging, 2017, 10, 1003-1012.	2.3	40
102	Carotid Artery Remodeling Is Segment Specific. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 927-934.	1.1	40
103	Hemodynamic assessments of venous pulsatile tinnitus using 4D-flow MRI. Neurology, 2018, 91, e586-e593.	1.5	40
104	Carotid atherosclerotic wall imaging by MRI. Neuroimaging Clinics of North America, 2002, 12, 391-401.	0.5	39
105	Differences in carotid arterial morphology and composition between individuals with and without obstructive coronary artery disease: A cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance, 2008, 10, 31.	1.6	36
106	Carotid plaque fissure: An underestimated source of intraplaque hemorrhage. Atherosclerosis, 2016, 254, 102-108.	0.4	36
107	The solution of Bloch equations for flowing spins during a selective pulse using a finite difference method. Medical Physics, 1987, 14, 914-921.	1.6	35
108	Signal features of the atherosclerotic plaque at 3.0 Tesla versus 1.5 Tesla: Impact on automatic classification. Journal of Magnetic Resonance Imaging, 2008, 28, 987-995.	1.9	35

#	Article	IF	CITATIONS
109	Blood Pressure Is a Major Modifiable Risk Factor Implicated in Pathogenesis of Intraplaque Hemorrhage. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 743-749.	1.1	35
110	Carotid Intraplaque Hemorrhage Imaging with Quantitative Vessel Wall T1 Mapping: Technical Development and Initial Experience. Radiology, 2018, 287, 276-284.	3.6	34
111	Clinical Factors Associated With High-Risk Carotid Plaque Features as Assessed by Magnetic Resonance Imaging in Patients With Established Vascular Disease (from the AIM-HIGH Study). American Journal of Cardiology, 2014, 114, 1412-1419.	0.7	33
112	PROMISE: Parallelâ€imaging and compressedâ€sensing reconstruction of multicontrast imaging using SharablE information. Magnetic Resonance in Medicine, 2015, 73, 523-535.	1.9	33
113	Measuring the labeling efficiency of pseudocontinuous arterial spin labeling. Magnetic Resonance in Medicine, 2017, 77, 1841-1852.	1.9	32
114	Lp(a) (Lipoprotein(a)) Levels Predict Progression of Carotid Atherosclerosis in Subjects With Atherosclerotic Cardiovascular Disease on Intensive Lipid Therapy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 673-678.	1.1	32
115	Real-time phase-contrast flow cardiovascular magnetic resonance with low-rank modeling and parallel imaging. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 19.	1.6	31
116	Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on blackâ€blood vessel wall MRI. Medical Physics, 2019, 46, 5544-5561.	1.6	31
117	Size of carotid artery intraplaque hemorrhage and acute ischemic stroke: a cardiovascular magnetic resonance Chinese atherosclerosis risk evaluation study. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 36.	1.6	31
118	MRI of Carotid Atherosclerosis. American Journal of Roentgenology, 2013, 200, W304-W313.	1.0	30
119	Differences in Carotid Plaques Between Symptomatic Patients With and Without Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1234-1239.	1.1	30
120	Quantitative evaluation of high intensity signal on MIP images of carotid atherosclerotic plaques from routine TOF-MRA reveals elevated volumes of intraplaque hemorrhage and lipid rich necrotic core. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 85.	1.6	29
121	Contemporary rationale for non-invasive imaging of adverse coronary plaque features to identify the vulnerable patient:Âa Position Paper from the European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology and the European Association of Cardiovascular Imaging. European Heart Iournal Cardiovascular Imaging, 2020, 21, 1177-1183.	0.5	29
122	Serial MRI of carotid plaque burden: Influence of subject repositioning on measurement precision. Magnetic Resonance in Medicine, 2007, 57, 592-599.	1.9	28
123	Cardiovascular magnetic resonance in carotid atherosclerotic disease. Journal of Cardiovascular Magnetic Resonance, 2009, 11, 53.	1.6	27
124	Varying Correlation Between ¹⁸ F-Fluorodeoxyglucose Positron Emission Tomography and Dynamic Contrast-Enhanced MRI in Carotid Atherosclerosis. Stroke, 2014, 45, 1842-1845.	1.0	27
125	Simultaneous multislice accelerated interleaved EPI DWI using generalized blipped-CAIPI acquisition and 3D K-space reconstruction. Magnetic Resonance in Medicine, 2017, 77, 1593-1605.	1.9	27
126	Comparison of symptomatic and asymptomatic atherosclerotic carotid plaques using parallel imaging and 3ÂT black-blood in vivo CMR. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 44.	1.6	26

#	Article	IF	CITATIONS
127	High-risk plaque in the superficial femoral artery of people with peripheral artery disease: Prevalence and associated clinical characteristics. Atherosclerosis, 2014, 237, 169-176.	0.4	26
128	Minimization of MR Contrast Weightings for the Comprehensive Evaluation of Carotid Atherosclerotic Disease. Investigative Radiology, 2010, 45, 36-41.	3.5	25
129	Segmentation of carotid plaque using multicontrast 3D gradient echo MRI. Journal of Magnetic Resonance Imaging, 2012, 35, 812-819.	1.9	25
130	Magnetic Resonance Imaging Tracking of Graft Survival in the Infarcted Heart. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 358-367.	1.0	25
131	Non-Invasive Identification of Vulnerable Atherosclerotic Plaques Using Texture Analysis in Ultrasound Carotid Elastography: An InÂVivo Feasibility Study Validated by Magnetic Resonance Imaging. Ultrasound in Medicine and Biology, 2017, 43, 817-830.	0.7	25
132	Atherosclerotic plaque features and distribution in bilateral carotid arteries of asymptomatic elderly population: A 3D multicontrast MR vessel wall imaging study. European Journal of Radiology, 2017, 96, 6-11.	1.2	25
133	Interleaved <scp>EPI</scp> diffusion imaging using <scp>SPIR</scp> i <scp>T</scp> â€based reconstruction with virtual coil compression. Magnetic Resonance in Medicine, 2018, 79, 1525-1531.	1.9	25
134	Identification of intraplaque haemorrhage in carotid artery by simultaneous non-contrast angiography and intraPlaque haemorrhage (SNAP) imaging: a magnetic resonance vessel wall imaging study. European Radiology, 2018, 28, 1681-1686.	2.3	25
135	Quantitative assessment of the intracranial vasculature in an older adult population using iCafe. Neurobiology of Aging, 2019, 79, 59-65.	1.5	25
136	Association Between Carotid Bifurcation Geometry and Atherosclerotic Plaque Vulnerability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1383-1391.	1.1	25
137	Roadmap Consensus on Carotid Artery Plaque Imaging and Impact on Therapy Strategies and Guidelines: An International, Multispecialty, Expert Review and Position Statement. American Journal of Neuroradiology, 2021, 42, 1566-1575.	1.2	25
138	Fast plaque burden assessment of the femoral artery using 3D black-blood MRI and automated segmentation. Medical Physics, 2011, 38, 5370-5384.	1.6	24
139	Quantifying Effect of Intraplaque Hemorrhage on Critical Plaque Wall Stress in Human Atherosclerotic Plaques Using Three-Dimensional Fluid-Structure Interaction Models. Journal of Biomechanical Engineering, 2012, 134, 121004.	0.6	24
140	Expansive arterial remodeling of the carotid arteries and its effect on atherosclerotic plaque composition and vulnerability: an in-vivo black-blood 3T CMR study in symptomatic stroke patients. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 11.	1.6	24
141	High resolution FDG-microPET of carotid atherosclerosis: plaque components underlying enhanced FDG uptake. International Journal of Cardiovascular Imaging, 2016, 32, 145-152.	0.7	24
142	Imaging of the high-risk carotid plaque: magnetic resonance imaging. Seminars in Vascular Surgery, 2017, 30, 54-61.	1.1	24
143	Simultaneous T ₁ and T ₂ mapping of the carotid plaque (SIMPLE) with T ₂ and inversion recovery prepared 3D radial imaging. Magnetic Resonance in Medicine, 2018, 80, 2598-2608.	1.9	24
144	Atherosclerosis of the carotid artery: Evaluation by magnetic resonance angiography. Journal of Magnetic Resonance Imaging, 1996, 6, 726-732.	1.9	23

#	Article	IF	CITATIONS
145	Longer duration of statin therapy is associated with decreased carotid plaque vascularity by magnetic resonance imaging. Atherosclerosis, 2016, 245, 74-81.	0.4	23
146	Ipsilateral plaques display higher T1 signals than contralateral plaques in recently symptomatic patients with bilateral carotid intraplaque hemorrhage. Atherosclerosis, 2017, 257, 78-85.	0.4	23
147	Nonstenotic Culprit Plaque: The Utility of High-Resolution Vessel Wall MRI of Intracranial Vessels after Ischemic Stroke. Case Reports in Radiology, 2015, 2015, 1-4.	0.5	22
148	Signal of Carotid Intraplaque Hemorrhage on MR T1-Weighted Imaging: Association with Acute Cerebral Infarct. American Journal of Neuroradiology, 2020, 41, 836-843.	1.2	22
149	Carotid Plaque CTA Analysis in Symptomatic Subjects with Bilateral Intraparenchymal Hemorrhage: A Preliminary Analysis. American Journal of Neuroradiology, 2019, 40, 1538-1545.	1.2	21
150	Atherosclerosis in strokeâ€related vascular beds and stroke risk: A 3â€D <scp>MR</scp> vessel wall imaging study. Annals of Clinical and Translational Neurology, 2018, 5, 1599-1610.	1.7	20
151	Characterization of atherosclerotic disease in thoracic aorta: A 3D, multicontrast vessel wall imaging study. European Journal of Radiology, 2016, 85, 2030-2035.	1.2	19
152	Prevalence of Compositional Features in Subclinical Carotid Atherosclerosis Determined by High-Resolution Magnetic Resonance Imaging in Chinese Patients With Coronary Artery Disease. Stroke, 2010, 41, 1157-1162.	1.0	18
153	Accelerated 3D MERGE carotid imaging using compressed sensing with a hidden markov tree model. Journal of Magnetic Resonance Imaging, 2012, 36, 1194-1202.	1.9	18
154	Semi-automatic carotid intraplaque hemorrhage detection and quantification on Magnetization-Prepared Rapid Acquisition Gradient-Echo (MP-RAGE) with optimized threshold selection. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 41.	1.6	18
155	Three-Dimensional Carotid Plaque MR Imaging. Neuroimaging Clinics of North America, 2016, 26, 1-12.	0.5	18
156	3D intracranial artery segmentation using a convolutional autoencoder. , 2017, , .		18
157	A comparison of readout segmented EPI and interleaved EPI in high-resolution diffusion weighted imaging. Magnetic Resonance Imaging, 2018, 47, 39-47.	1.0	18
158	Plaque components segmentation in carotid artery on simultaneous non-contrast angiography and intraplaque hemorrhage imaging using machine learning. Magnetic Resonance Imaging, 2019, 60, 93-100.	1.0	18
159	Quantification of morphometry and intensity features of intracranial arteries from 3D TOF MRA using the intracranial artery feature extraction (iCafe): A reproducibility study. Magnetic Resonance Imaging, 2019, 57, 293-302.	1.0	18
160	Multislab three-dimensional T2-weighted fast spin-echo imaging of the hippocampus: Sequence optimization. Journal of Magnetic Resonance Imaging, 1995, 5, 309-315.	1.9	17
161	In Vivo Validation of Simultaneous Non-Contrast Angiography and intraPlaque Hemorrhage (SNAP) Magnetic Resonance Angiography: An Intracranial Artery Study. PLoS ONE, 2016, 11, e0149130.	1.1	17
162	Accelerated phase contrast flow imaging with direct complex difference reconstruction. Magnetic Resonance in Medicine, 2017, 77, 1036-1048.	1.9	17

#	Article	IF	CITATIONS
163	Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging: Comparison with contrastâ€enhanced MR angiography for measuring carotid stenosis. Journal of Magnetic Resonance Imaging, 2017, 46, 1045-1052.	1.9	17
164	Inter-rater and scan–rescan reproducibility of the detection of intracranial atherosclerosis on contrast-enhanced 3D vessel wall MRI. British Journal of Radiology, 2019, 92, 20180973.	1.0	17
165	Computed tomography angiography vs 3 T black-blood cardiovascular magnetic resonance for identification of symptomatic carotid plaques. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 84.	1.6	16
166	Dynamic contrast-enhanced MR imaging of carotid vasa vasorum in relation to coronary and cerebrovascular events. Atherosclerosis, 2017, 263, 420-426.	0.4	16
167	Segmentation of gray matter, white matter, and CSF with fluid and white matter suppression using MP2RACE. Journal of Magnetic Resonance Imaging, 2018, 48, 1540-1550.	1.9	16
168	Assessment of longitudinal distribution of subclinical atherosclerosis in femoral arteries by three-dimensional cardiovascular magnetic resonance vessel wall imaging. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 60.	1.6	16
169	Modelâ€based reconstruction for simultaneous multislice and parallel imaging accelerated multishot diffusion tensor imaging. Medical Physics, 2018, 45, 3196-3204.	1.6	16
170	Comparison of time-of-flight MR angiography and intracranial vessel wall MRI for luminal measurements relative to CT angiography. British Journal of Radiology, 2021, 94, 20200743.	1.0	16
171	Time-Efficient Black Blood RCA Wall Imaging at 3T Using Improved Motion Sensitized Driven Equilibrium (iMSDE): Feasibility and Reproducibility. PLoS ONE, 2011, 6, e26567.	1.1	16
172	Evaluation of basilar artery atherosclerotic plaque distribution by 3D MR vessel wall imaging. Journal of Magnetic Resonance Imaging, 2016, 44, 1592-1599.	1.9	15
173	Characterization of Carotid Atherosclerotic Plaques Using 3-Dimensional MERGE Magnetic Resonance Imaging and Correlation With Stroke Risk Factors. Stroke, 2020, 51, 475-480.	1.0	15
174	Preoperative Remnant Liver Function Evaluation Using a Routine Clinical Dynamic Gd-EOB-DTPA-Enhanced MRI Protocol in Patients with Hepatocellular Carcinoma. Annals of Surgical Oncology, 2021, 28, 3672-3682.	0.7	15
175	Evaluation of carotid atherosclerotic plaque surface characteristics utilizing simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) technique. Journal of Magnetic Resonance Imaging, 2018, 47, 634-639.	1.9	14
176	Association of severity between carotid and intracranial artery atherosclerosis. Annals of Clinical and Translational Neurology, 2018, 5, 843-849.	1.7	14
177	Accelerated multi-contrast high isotropic resolution 3D intracranial vessel wall MRI using a tailored k-space undersampling and partially parallel reconstruction strategy. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 343-357.	1.1	14
178	Automated Artery Localization and Vessel Wall Segmentation Using Tracklet Refinement and Polar Conversion. IEEE Access, 2020, 8, 217603-217614.	2.6	14
179	Arterial elasticity, endothelial function and intracranial vascular health: A multimodal MRI study. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1390-1397.	2.4	14
180	Uncontrolled hypertension associates with subclinical cerebrovascular health globally: a multimodal imaging study. European Radiology, 2021, 31, 2233-2241.	2.3	14

#	Article	IF	CITATIONS
181	Atherosclerotic plaque inflammation quantification using dynamic contrast-enhanced (DCE) MRI. Quantitative Imaging in Medicine and Surgery, 2013, 3, 298-301.	1.1	14
182	Flow-induced phase effects and compensation technique for slice-selective pulses. Magnetic Resonance in Medicine, 1989, 9, 161-176.	1.9	13
183	In vivo semi-automatic segmentation of multicontrast cardiovascular magnetic resonance for prospective cohort studies on plaque tissue composition: initial experience. International Journal of Cardiovascular Imaging, 2016, 32, 73-81.	0.7	13
184	Femoral artery plaque characteristics, lower extremity collaterals, and mobility loss in peripheral artery disease. Vascular Medicine, 2017, 22, 473-481.	0.8	13
185	Highâ€resolution diffusion tensor imaging in cervical spondylotic myelopathy: a preliminary followâ€up study. NMR in Biomedicine, 2017, 30, e3769.	1.6	13
186	The effects of navigator distortion and noise level on interleaved EPI DWI reconstruction: a comparison between image―and kâ€spaceâ€based method. Magnetic Resonance in Medicine, 2018, 80, 2024-2032.	1.9	13
187	Association Between Incomplete Circle of Willis and Carotid Vulnerable Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2744-2749.	1.1	13
188	Carotid artery segmentation using level set method with double adaptive threshold (DATLS) on TOF-MRA images. Magnetic Resonance Imaging, 2019, 63, 123-130.	1.0	13
189	Serial magnetic resonance imaging detects a rapid reduction in plaque lipid content under PCSK9 inhibition with alirocumab. International Journal of Cardiovascular Imaging, 2021, 37, 1415-1422.	0.7	13
190	Fast simultaneous noncontrast angiography and intraplaque hemorrhage (f <scp>SNAP</scp>) sequence for carotid artery imaging. Magnetic Resonance in Medicine, 2017, 77, 753-758.	1.9	12
191	Black blood magnetic resonance angiography with Dy-DTPA polymer: Effect on arterial intraluminal signal intensity, lumen diameter, and wall thickness. Journal of Magnetic Resonance Imaging, 1998, 8, 1051-1059.	1.9	11
192	Hepatic function imaging using dynamic Gdâ€EOBâ€DTPA enhanced MRI and pharmacokinetic modeling. Magnetic Resonance in Medicine, 2017, 78, 1488-1495.	1.9	11
193	Semiautomatic carotid intraplaque hemorrhage volume measurement using 3D carotid MRI. Journal of Magnetic Resonance Imaging, 2019, 50, 1055-1062.	1.9	11
194	Understanding Atherosclerosis Through an Osteoarthritis Data Set. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1018-1025.	1.1	10
195	Intra-individual comparison of carotid and femoral atherosclerotic plaque features with in vivo MR plaque imaging. International Journal of Cardiovascular Imaging, 2015, 31, 1611-1618.	0.7	9
196	Quantitative characterization of carotid plaque components using MR apparent diffusion coefficients and longitudinal relaxation rates at 3T: A comparison with histology. Journal of Magnetic Resonance Imaging, 2018, 48, 1657-1667.	1.9	9
197	Angiographic contrast mechanism comparison between Simultaneous Non-contrast Angiography and intraPlaque hemorrhage (SNAP) sequence and Time of Flight (TOF) sequence for intracranial artery. Magnetic Resonance Imaging, 2020, 66, 199-207.	1.0	9
198	Evaluation of 3D multi-contrast carotid vessel wall MRI: a comparative study. Quantitative Imaging in Medicine and Surgery, 2020, 10, 269-282.	1.1	9

#	Article	IF	CITATIONS
199	Vessel length on SNAP MRA and TOF MRA is a potential imaging biomarker for brain blood flow. Magnetic Resonance Imaging, 2021, 79, 20-27.	1.0	9
200	MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up. PLoS ONE, 2017, 12, e0180829.	1.1	9
201	High-Field Atherosclerotic Plaque Magnetic Resonance Imaging. Neuroimaging Clinics of North America, 2012, 22, 271-284.	0.5	8
202	Identifying Carotid Plaque Composition in MRI with Convolutional Neural Networks. , 2017, , .		8
203	Combining morphological and biomechanical factors for optimal carotid plaque progression prediction: An MRI-based follow-up study using 3D thin-layer models. International Journal of Cardiology, 2019, 293, 266-271.	0.8	8
204	Association between coexisting intracranial artery and extracranial carotid artery atherosclerotic diseases and ipsilateral cerebral infarction: a Chinese Atherosclerosis Risk Evaluation (CARE-II) study. Stroke and Vascular Neurology, 2021, 6, 595-602.	1.5	8
205	Meshless Generalized Finite Difference Method and Human Carotid Atherosclerotic Plaque Progression Simulation Using Multi-Year MRI Patient-Tracking Data. CMES - Computer Modeling in Engineering and Sciences, 2008, 28, 95-107.	0.8	8
206	Associations of arterial distensibility between carotid arteries and abdominal aorta by MR. Journal of Magnetic Resonance Imaging, 2015, 41, 1138-1142.	1.9	7
207	A Robust and Accurate Two-Step Auto-Labeling Conditional Iterative Closest Points (TACICP) Algorithm for Three-Dimensional Multi-Modal Carotid Image Registration. PLoS ONE, 2016, 11, e0148783.	1.1	7
208	Association between Snoring and Highâ€Risk Carotid Plaque Features. Otolaryngology - Head and Neck Surgery, 2017, 157, 336-344.	1.1	7
209	Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver <scp>DCE</scp> â€ <scp>MRI</scp> . Magnetic Resonance in Medicine, 2018, 79, 3093-3102.	1.9	7
210	Orthostatic blood pressure reduction as a possible explanation for memory deficits in dialysis patients. Hypertension Research, 2019, 42, 1049-1056.	1.5	7
211	Fully automated and robust analysis technique for popliteal artery vessel wall evaluation (FRAPPE) using neural network models from standardized knee MRI. Magnetic Resonance in Medicine, 2020, 84, 2147-2160.	1.9	7
212	Differences in atheroma between Caucasian and Asian subjects with anterior stroke: A vessel wall MRI study. Stroke and Vascular Neurology, 2021, 6, 25-32.	1.5	7
213	Domain adaptive and fully automated carotid artery atherosclerotic lesion detection using an artificial intelligence approach (LATTE) on 3D MRI. Magnetic Resonance in Medicine, 2021, 86, 1662-1673.	1.9	7
214	Atherosclerotic Burden and Remodeling Patterns of the Popliteal Artery as Detected in the Magnetic Resonance Imaging Osteoarthritis Initiative Data Set. Journal of the American Heart Association, 2021, 10, e018408.	1.6	7
215	Automated Intracranial Artery Labeling Using a Graph Neural Network and Hierarchical Refinement. Lecture Notes in Computer Science, 2020, , 76-85.	1.0	7
216	Manual versus Automated Carotid Artery Plaque Component Segmentation in High and Lower Quality 3.0 Tesla MRI Scans. PLoS ONE, 2016, 11, e0164267.	1.1	7

#	Article	IF	CITATIONS
217	Multiâ€Planar, Multiâ€Contrast and Multiâ€Time Point Analysis Tool (<scp>MOCHA</scp>) for Intracranial Vessel Wall Characterization. Journal of Magnetic Resonance Imaging, 2022, 56, 944-955.	1.9	7
218	Segmentation of Multi-Channel Image with Markov Random Field Based Active Contour Model. Journal of Signal Processing Systems, 2002, 31, 45-55.	1.0	6
219	Collateral vessel number, plaque burden, and functional decline in peripheral artery disease. Vascular Medicine, 2014, 19, 281-288.	0.8	6
220	STEP: Selfâ€supporting tailored kâ€space estimation for parallel imaging reconstruction. Magnetic Resonance in Medicine, 2016, 75, 750-761.	1.9	6
221	Comparison of Carotid Atherosclerosis between Patients at High Altitude and Sea Level: A Chinese Atherosclerosis Risk Evaluation Study. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 104448.	0.7	6
222	Chronic kidney disease, atherosclerotic plaque characteristics on carotid magnetic resonance imaging, and cardiovascular outcomes. BMC Nephrology, 2021, 22, 69.	0.8	6
223	Associations of intracranial artery length and branch number on non-contrast enhanced MRA with cognitive impairment in individuals with carotid atherosclerosis. Scientific Reports, 2022, 12, 7456.	1.6	6
224	Quest for the Vulnerable Atheroma: Carotid Stenosis and Diametric Strain—A Feasibility Study. Ultrasound in Medicine and Biology, 2016, 42, 699-716.	0.7	5
225	Neural network enhanced 3D turbo spin echo for MR intracranial vessel wall imaging. Magnetic Resonance Imaging, 2021, 78, 7-17.	1.0	5
226	Carotid vulnerable plaque coexisting with cerebral small vessel disease and acute ischemic stroke: a Chinese Atherosclerosis Risk Evaluation study. European Radiology, 2022, 32, 6080-6089.	2.3	5
227	Image Segmentation Based on Bayesian Network-Markov Random Field Model and its Application to In Vivo Plaque Composition. , 0, , .		4
228	Intravascular 3.0ÂT MRI Using an Imaging-Guidewire: a Feasibility Study in Swine. Applied Magnetic Resonance, 2011, 40, 105-112.	0.6	4
229	Identification of early atherosclerotic lesions in carotid arteries with quantitative characteristics measured by 3D MRI. Journal of Magnetic Resonance Imaging, 2016, 44, 1270-1276.	1.9	4
230	A vascular image registration method based on network structure and circuit simulation. BMC Bioinformatics, 2017, 18, 229.	1.2	4
231	3D true-phase polarity recovery with independent phase estimation using three-tier stacks based region growing (3D-TRIPS). Magnetic Resonance Materials in Physics, Biology, and Medicine, 2018, 31, 87-99.	1.1	4
232	Bilaterally Asymmetric Associations Between Extracranial Carotid Artery Atherosclerosis and Ipsilateral Middle Cerebral Artery Stenosis in Symptomatic Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2965-2974.	1.1	4
233	Comparison of carotid atherosclerotic plaques between subjects in Northern and Southern China: a Chinese atherosclerosis risk evaluation study. Stroke and Vascular Neurology, 2020, 5, 138-145.	1.5	4
234	Confidence Weighting for Robust Automated Measurements of Popliteal Vessel Wall Magnetic Resonance Imaging. Circulation Genomic and Precision Medicine, 2020, 13, e002870.	1.6	4

#	Article	IF	CITATIONS
235	Intracranial vascular feature changes in time of flight MR angiography in patients undergoing carotid revascularization surgery. Magnetic Resonance Imaging, 2021, 75, 45-50.	1.0	4
236	Comparison of Carotid Plaque Characteristics Between Men and Women Using Magnetic Resonance Vessel Wall Imaging: A Chinese Atherosclerosis Risk Evaluation Study. Journal of Magnetic Resonance Imaging, 2021, 54, 646-654.	1.9	4
237	Effects of Levodopa Therapy on Cerebral Arteries and Perfusion in Parkinson's Disease Patients. Journal of Magnetic Resonance Imaging, 2022, 55, 943-953.	1.9	4
238	A Noninvasive Sonographic Study of Multisite Atherosclerosis in an Elderly Chinese Population. Journal of Ultrasound in Medicine, 2017, 36, 639-647.	0.8	3
239	Large coverage blackâ€bright blood interleaved imaging sequence (LaBBI) for 3D dynamic contrastâ€enhanced MRI of vessel wall. Magnetic Resonance in Medicine, 2018, 79, 1334-1344.	1.9	3
240	Simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (<scp>SAHA</scp>) for dynamic contrastâ€enhanced <scp>MRI</scp> of liver. Magnetic Resonance in Medicine, 2018, 79, 2629-2641.	1.9	3
241	Identification of carotid lipid-rich necrotic core and calcification by 3D magnetization-prepared rapid acquisition gradient-echo imaging. Magnetic Resonance Imaging, 2018, 53, 71-76.	1.0	3
242	Improved carotid lumen delineation on non-contrast MR angiography using SNAP (Simultaneous) Tj ETQq0 0 0 r 62, 87-93.	gBT /Overl 1.0	ock 10 Tf 50 3
243	Imaging of Carotid Plaque Neovascularization by Contrast-Enhanced Ultrasound and Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Cerebrovascular Diseases, 2019, 48, 140-148.	0.8	3
244	Four Different Carotid Atherosclerotic Behaviors Based on Luminal Stenosis and Plaque Characteristics in Symptomatic Patients: An in Vivo Study. Diagnostics, 2019, 9, 137.	1.3	3
245	Selfâ€calibrating waveâ€encoded 3D turbo spin echo imaging using subspace model based autofocusing. Magnetic Resonance in Medicine, 2020, 83, 1250-1262.	1.9	3
246	Quantitative assessment of carotid artery atherosclerosis by three-dimensional magnetic resonance and two-dimensional ultrasound imaging: a comparison study. Quantitative Imaging in Medicine and Surgery, 2020, 10, 1021-1032.	1.1	3
247	A novel algorithm for refining cerebral vascular measurements in infants and adults. Journal of Neuroscience Methods, 2020, 340, 108751.	1.3	3
248	A novel sequence for simultaneous measurement of wholeâ€brain static and dynamic MRA, intracranial vessel wall image, and T 1 â€weighted structural brain MRI. Magnetic Resonance in Medicine, 2021, 85, 316-325.	1.9	3
249	Urinary sodium and potassium excretion and cerebrovascular health: a multimodal imaging study. European Journal of Nutrition, 2021, 60, 4555-4563.	1.8	3
250	Detection of Advanced Lesions of Atherosclerosis in Carotid Arteries Using 3-Dimensional Motion-Sensitized Driven-Equilibrium Prepared Rapid Gradient Echo (3D-MERGE) Magnetic Resonance Imaging as a Screening Tool. Stroke, 2022, 53, 194-200.	1.0	3
251	Seeking Culprit Lesions in Cryptogenic Stroke: The Utility of Vessel Wall Imaging. Journal of the American Heart Association, 2015, 4, 002207.	1.6	2
252	MR Quantification of Plaque Lipid Content. JACC: Cardiovascular Imaging, 2017, 10, 757-759.	2.3	2

#	Article	IF	CITATIONS
253	Association of Long-Term Risk Factor Levels With Carotid Atherosclerosis. Circulation: Cardiovascular Imaging, 2019, 12, e009226.	1.3	2
254	Impact of Patient-Specific In Vivo Vessel Material Properties on Carotid Atherosclerotic Plaque Stress/Strain Calculations. International Journal of Computational Methods, 2019, 16, 1842002.	0.8	2
255	Comparing Symptomatic and Asymptomatic Carotid Artery Atherosclerosis in Patients With Bilateral Carotid Vulnerable Plaques Using Magnetic Resonance Imaging. Angiology, 2022, 73, 104-111.	0.8	2
256	Quantitative Assessment of the Intracranial Vasculature of Infants and Adults Using iCafe (Intracranial Artery Feature Extraction). Frontiers in Neurology, 2021, 12, 668298.	1.1	2
257	Stroke Prevention with Extracranial Carotid Artery Disease. Current Cardiology Reports, 2021, 23, 161.	1.3	2
258	Measurements of blood vessel wall areas in black-blood MR images using global minimum snake algorithm. , 1999, , .		1
259	Information theoretic analysis of plaque in MR imaging. , 0, , .		1
260	Quantifying Human Atherosclerotic Plaque Growth Function Using Multi-Year In Vivo MRI and Meshless Local Petrov-Galerkin Method. , 2007, , .		1
261	A feasibility study of ultrasound B-mode and strain imaging for risk assessment of carotid atherosclerotic plaques validated by magnetic resonance imaging. , 2013, , .		1
262	Coronary Involvement in Lupus Patients. JACC: Cardiovascular Imaging, 2014, 7, 771-773.	2.3	1
263	Multiscale coherence regularization reconstruction using a nonlocal operator for fast variable-density spiral imaging. Magnetic Resonance Imaging, 2016, 34, 964-973.	1.0	1
264	Imaging to Assess the Effect of Anti-Inflammatory Therapy in Aortic and Carotid Atherosclerosis â^—. Journal of the American College of Cardiology, 2016, 68, 1781-1784.	1.2	1
265	Summary of clinical and laboratory data of study subjects with and without DCE-MRI plaque measurements in the AIM-HIGH clinical trial. Data in Brief, 2016, 6, 476-481.	0.5	1
266	Technical Note: Measurement of common carotid artery lumen dynamics using blackâ€blood <scp>MR</scp> cine imaging. Medical Physics, 2017, 44, 1105-1112.	1.6	1
267	A target-oriented and multi-patch based framework for image quality assessment on carotid artery MRI. , 2020, , .		1
268	Simultaneous Intracranial Artery Tracing and Segmentation from Magnetic Resonance Angiography by Joint Optimization from Multiplanar Reformation. Lecture Notes in Computer Science, 2019, , 201-209.	1.0	1
269	Plaque Characteristics in the Superficial Femoral Artery Correlate with Walking Impairment Questionnaire Scores in Peripheral Arterial Disease: The Walking and Leg Circulation Study (WALCS) III. Journal of Surgical Radiology, 2012, 3, 148-157.	0.1	1
270	Atherosclerotic blood vessel tracking and lumen segmentation in topology changes situations of MR image sequences. , 0, , .		0

#	Article	IF	CITATIONS
271	Response to Letter by Moody et al. Stroke, 2006, 37, 1649-1649.	1.0	Ο
272	MRI plaque imaging and its role in population-based studies. BMC Medicine, 2010, 8, 78.	2.3	0
273	PROMISE: Parallel-imaging and compressed-sensing reconstruction of multicontrast imaging using SharablE information. Magnetic Resonance in Medicine, 2015, 73, spcone-spcone.	1.9	Ο
274	Identification of carotid non-hemorrhagic lipid-rich necrotic core by magnetization-prepared rapid acquisition gradient-echo imaging: Validation by contrast-enhanced T1 weighted imaging. Magnetic Resonance Imaging, 2019, 63, 155-158.	1.0	0
275	Teaching Video NeuroImage: Wall enhancement with slow blood flow and thrombosis prior to basilar aneurysm rupture. Neurology, 2020, 96, 10.1212/WNL.0000000000010820.	1.5	Ο
276	Magnetic Resonance Imaging: Cardiovascular Applications for Clinical Trials. , 2021, , 1517-1538.		0
277	MULTI-PATIENT FSI STUDIES FOR ATHEROSCLEROTIC CAROTID PLAQUE PROGRESSION BASED ON SERIAL MAGNETIC RESONANCE IMAGING. , 2009, , 203-217.		0
278	Image Processing: What Is Needed and Unique for Vessel Wall Imaging?. , 2020, , 269-282.		0
279	Vessel Wall Imaging in the Era of Artificial Intelligence. , 2020, , 283-294.		Ο
280	Neurovascular vessel wall imaging: new techniques and clinical applications. Advances in Magnetic Resonance Technology and Applications, 2021, 4, 485-500.	0.0	0