List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5341156/publications.pdf Version: 2024-02-01



**DENCLIN** 

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Organic Thinâ€Film Transistors for Chemical and Biological Sensing. Advanced Materials, 2012, 24, 34-51.                                                                                                                                                    | 11.1 | 760       |
| 2  | Photoelectrochemical bioanalysis: the state of the art. Chemical Society Reviews, 2015, 44, 729-741.                                                                                                                                                        | 18.7 | 750       |
| 3  | Photoelectrochemical DNA Biosensors. Chemical Reviews, 2014, 114, 7421-7441.                                                                                                                                                                                | 23.0 | 722       |
| 4  | Organic Electrochemical Transistors Integrated in Flexible Microfluidic Systems and Used for<br>Labelâ€Free DNA Sensing. Advanced Materials, 2011, 23, 4035-4040.                                                                                           | 11.1 | 278       |
| 5  | Highly Sensitive Photoelectrochemical Immunoassay with Enhanced Amplification Using Horseradish<br>Peroxidase Induced Biocatalytic Precipitation on a CdS Quantum Dots Multilayer Electrode. Analytical<br>Chemistry, 2012, 84, 917-923.                    | 3.2  | 270       |
| 6  | The Application of Organic Electrochemical Transistors in Cellâ€Based Biosensors. Advanced Materials, 2010, 22, 3655-3660.                                                                                                                                  | 11.1 | 255       |
| 7  | Photoelectrochemical Immunoassays. Analytical Chemistry, 2018, 90, 615-627.                                                                                                                                                                                 | 3.2  | 255       |
| 8  | Highly Sensitive Glucose Biosensors Based on Organic Electrochemical Transistors Using Platinum<br>Gate Electrodes Modified with Enzyme and Nanomaterials. Advanced Functional Materials, 2011, 21,<br>2264-2272.                                           | 7.8  | 243       |
| 9  | Photoelectrochemical enzymatic biosensors. Biosensors and Bioelectronics, 2017, 92, 294-304.                                                                                                                                                                | 5.3  | 231       |
| 10 | <i>In Situ</i> Enzymatic Ascorbic Acid Production as Electron Donor for CdS Quantum Dots Equipped<br>TiO <sub>2</sub> Nanotubes: A General and Efficient Approach for New Photoelectrochemical<br>Immunoassay. Analytical Chemistry, 2012, 84, 10518-10521. | 3.2  | 210       |
| 11 | Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosensors and<br>Bioelectronics, 2011, 26, 4559-4563.                                                                                                                   | 5.3  | 204       |
| 12 | Ion-Sensitive Properties of Organic Electrochemical Transistors. ACS Applied Materials &<br>Interfaces, 2010, 2, 1637-1641.                                                                                                                                 | 4.0  | 195       |
| 13 | Energy transfer between CdS quantum dots and Au nanoparticles in photoelectrochemical detection.<br>Chemical Communications, 2011, 47, 10990.                                                                                                               | 2.2  | 177       |
| 14 | Exciton-Plasmon Interactions between CdS Quantum Dots and Ag Nanoparticles in<br>Photoelectrochemical System and Its Biosensing Application. Analytical Chemistry, 2012, 84, 5892-5897.                                                                     | 3.2  | 174       |
| 15 | Using G-Quadruplex/Hemin To "Switch-On―the Cathodic Photocurrent of p-Type PbS Quantum Dots:<br>Toward a Versatile Platform for Photoelectrochemical Aptasensing. Analytical Chemistry, 2015, 87,<br>2892-2900.                                             | 3.2  | 152       |
| 16 | Hybrid PbS Quantum Dot/Nanoporous NiO Film Nanostructure: Preparation, Characterization, and<br>Application for a Self-Powered Cathodic Photoelectrochemical Biosensor. Analytical Chemistry, 2017,<br>89, 8070-8078.                                       | 3.2  | 149       |
| 17 | Photoelectrochemical aptasensing. TrAC - Trends in Analytical Chemistry, 2016, 82, 307-315.                                                                                                                                                                 | 5.8  | 145       |
| 18 | Solution-Gated Graphene Field Effect Transistors Integrated in Microfluidic Systems and Used for Flow Velocity Detection. Nano Letters, 2012, 12, 1404-1409.                                                                                                | 4.5  | 121       |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cathodic photoelectrochemical bioanalysis. TrAC - Trends in Analytical Chemistry, 2019, 114, 81-88.                                                                                                                          | 5.8  | 108       |
| 20 | Acetylcholine Esterase Antibodies on BiOI Nanoflakes/TiO <sub>2</sub> Nanoparticles Electrode: A<br>Case of Application for General Photoelectrochemical Enzymatic Analysis. Analytical Chemistry, 2013,<br>85, 11686-11690. | 3.2  | 106       |
| 21 | Simultaneous Photoelectrochemical Immunoassay of Dual Cardiac Markers Using Specific Enzyme<br>Tags: A Proof of Principle for Multiplexed Bioanalysis. Analytical Chemistry, 2016, 88, 1990-1994.                            | 3.2  | 97        |
| 22 | Al-TiO <sub>2</sub> Composite-Modified Single-Layer Graphene as an Efficient Transparent Cathode for<br>Organic Solar Cells. ACS Nano, 2013, 7, 1740-1747.                                                                   | 7.3  | 90        |
| 23 | Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible<br>Optoelectronic Devices. ACS Applied Materials & Interfaces, 2016, 8, 28406-28411.                                       | 4.0  | 83        |
| 24 | Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 8886-8894.                                            | 5.2  | 80        |
| 25 | Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosensors and Bioelectronics, 2017, 94, 207-218.                                                                                      | 5.3  | 79        |
| 26 | An Integrated Electrochemical Nanodevice for Intracellular RNA Collection and Detection in Single<br>Living Cell. Angewandte Chemie - International Edition, 2021, 60, 13244-13250.                                          | 7.2  | 75        |
| 27 | Ultrasensitive photoelectrochemical biosensing based on biocatalytic deposition. Electrochemistry Communications, 2011, 13, 495-497.                                                                                         | 2.3  | 68        |
| 28 | Panchromatic thin perovskite solar cells with broadband plasmonic absorption enhancement and efficient light scattering management by Au@Ag core-shell nanocuboids. Nano Energy, 2017, 41, 654-664.                          | 8.2  | 68        |
| 29 | Protein Binding Bends the Gold Nanoparticle Capped DNA Sequence: Toward Novel<br>Energy-Transfer-Based Photoelectrochemical Protein Detection. Analytical Chemistry, 2016, 88,<br>3864-3871.                                 | 3.2  | 67        |
| 30 | lonic liquid modified SnO <sub>2</sub> nanocrystals as a robust electron transporting layer for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 22086-22095.                             | 5.2  | 66        |
| 31 | An Integrated Photoelectrochemical Nanotool for Intracellular Drug Delivery and Evaluation of Treatment Effect. Angewandte Chemie - International Edition, 2021, 60, 25762-25765.                                            | 7.2  | 64        |
| 32 | A giant negative electrocaloric effect in Eu-doped PbZrO <sub>3</sub> thin films. Journal of Materials<br>Chemistry C, 2016, 4, 3375-3378.                                                                                   | 2.7  | 62        |
| 33 | Photoelectrochemical Bioanalysis Platform of Gold Nanoparticles Equipped Perovskite<br>Bi <sub>4</sub> NbO <sub>8</sub> Cl. Analytical Chemistry, 2017, 89, 7869-7875.                                                       | 3.2  | 62        |
| 34 | Facile fabrication of highly efficient ETL-free perovskite solar cells with 20% efficiency by defect passivation and interface engineering. Chemical Communications, 2019, 55, 2777-2780.                                    | 2.2  | 61        |
| 35 | Recent advances in the use of quantum dots for photoelectrochemical bioanalysis. Nanoscale, 2016, 8, 17407-17414.                                                                                                            | 2.8  | 60        |
| 36 | Organic Electrochemical Transistor Array for Recording Transepithelial Ion Transport of Human<br>Airway Epithelial Cells. Advanced Materials, 2013, 25, 6575-6580.                                                           | 11.1 | 59        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Liposome-Mediated in Situ Formation of AgI/Ag/BiOI Z-Scheme Heterojunction on Foamed Nickel<br>Electrode: A Proof-of-Concept Study for Cathodic Liposomal Photoelectrochemical Bioanalysis.<br>Analytical Chemistry, 2019, 91, 3800-3804. | 3.2 | 56        |
| 38 | Folding-based photoelectrochemical biosensor: binding-induced conformation change of a quantum<br>dot-tagged DNA probe for mercury( <scp>ii</scp> ) detection. Chemical Communications, 2014, 50,<br>12088-12090.                         | 2.2 | 55        |
| 39 | Semiconducting Organic–Inorganic Nanodots Heterojunctions: Platforms for General<br>Photoelectrochemical Bioanalysis Application. Analytical Chemistry, 2018, 90, 3759-3765.                                                              | 3.2 | 54        |
| 40 | Organic Photoâ€Electrochemical Transistorâ€Based Biosensor: A Proofâ€ofâ€Concept Study toward Highly<br>Sensitive DNA Detection. Advanced Healthcare Materials, 2018, 7, e1800536.                                                        | 3.9 | 54        |
| 41 | Polymer Dots for Photoelectrochemical Bioanalysis. Analytical Chemistry, 2017, 89, 4945-4950.                                                                                                                                             | 3.2 | 51        |
| 42 | Semitransparent organic solar cells with hybrid monolayer graphene/metal grid as top electrodes.<br>Applied Physics Letters, 2013, 102, 113303.                                                                                           | 1.5 | 49        |
| 43 | Large-area color controllable remote carbon white-light light-emitting diodes. Carbon, 2015, 85, 344-350.                                                                                                                                 | 5.4 | 49        |
| 44 | Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode. Applied Physics Letters, 2013, 102, 153304.                                                                            | 1.5 | 48        |
| 45 | Bismuthoxyiodide Nanoflakes/Titania Nanotubes Arrayed p-n Heterojunction and Its Application for Photoelectrochemical Bioanalysis. Scientific Reports, 2014, 4, 4426.                                                                     | 1.6 | 45        |
| 46 | van der Waals epitaxy of Al-doped ZnO film on mica as a flexible transparent heater with ultrafast<br>thermal response. Applied Physics Letters, 2018, 112, .                                                                             | 1.5 | 43        |
| 47 | A Polymer Dots-Based Photoelectrochemical pH Sensor: Simplicity, High Sensitivity, and Broad-Range<br>pH Measurement. Analytical Chemistry, 2018, 90, 8300-8303.                                                                          | 3.2 | 40        |
| 48 | Multifunctional Hydrogel Hybridâ€Gated Organic Photoelectrochemical Transistor for Biosensing.<br>Advanced Functional Materials, 2022, 32, .                                                                                              | 7.8 | 40        |
| 49 | Simultaneous photoelectrochemical and visualized immunoassay of β-human chorionic gonadotrophin. Biosensors and Bioelectronics, 2016, 85, 294-299.                                                                                        | 5.3 | 39        |
| 50 | Hierarchical CuInS 2 -based heterostructure: Application for photocathodic bioanalysis of sarcosine.<br>Biosensors and Bioelectronics, 2018, 107, 230-236.                                                                                | 5.3 | 39        |
| 51 | Regulating Lightâ€Sensitive Gate of Organic Photoelectrochemical Transistor toward Sensitive<br>Biodetection at Zero Gate Bias. Small Structures, 2021, 2, 2100087.                                                                       | 6.9 | 38        |
| 52 | Improvement of the Tunable Wettability Property of Poly(3-alkylthiophene) Films. Langmuir, 2009, 25,<br>7465-7470.                                                                                                                        | 1.6 | 37        |
| 53 | Tuning of dielectric and ferroelectric properties in single phase BiFeO3 ceramics with controlled Fe2+/Fe3+ ratio. Ceramics International, 2014, 40, 5263-5268.                                                                           | 2.3 | 36        |
| 54 | Structure, corrosion resistance and in vitro bioactivity of Ca and P containing TiO 2 coating fabricated on NiTi alloy by plasma electrolytic oxidation. Applied Surface Science, 2015, 356, 1234-1243.                                   | 3.1 | 36        |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Ferroelectric Polymer Thin Films for Organic Electronics. Journal of Nanomaterials, 2015, 2015, 1-14.                                                                                                                                                 | 1.5 | 35        |
| 56 | A novel and sensitive sarcosine biosensor based on organic electrochemical transistor.<br>Electrochimica Acta, 2019, 307, 100-106.                                                                                                                    | 2.6 | 35        |
| 57 | An ultrasensitive energy-transfer based photoelectrochemical protein biosensor. Chemical Communications, 2016, 52, 3034-3037.                                                                                                                         | 2.2 | 33        |
| 58 | Variable-range-hopping conductivity in high-k Ba(Fe0.5Nb0.5)O3 ceramics. Journal of Applied Physics, 2013, 114, .                                                                                                                                     | 1.1 | 30        |
| 59 | Binding-induced formation of DNAzyme on an Au@Ag nanoparticles/TiO2 nanorods electrode:<br>Stimulating biocatalytic precipitation amplification for plasmonic photoelectrochemical bioanalysis.<br>Biosensors and Bioelectronics, 2019, 134, 103-108. | 5.3 | 28        |
| 60 | A sensitive DNA sensor based on an organic electrochemical transistor using a peptide nucleic acid-modified nanoporous gold gate electrode. RSC Advances, 2017, 7, 52118-52124.                                                                       | 1.7 | 27        |
| 61 | 3D Semiconducting Polymer/Graphene Networks: Toward Sensitive Photocathodic Enzymatic<br>Bioanalysis. Analytical Chemistry, 2018, 90, 9687-9690.                                                                                                      | 3.2 | 27        |
| 62 | Fabrication of organic electrochemical transistor arrays for biosensing. Biochimica Et Biophysica<br>Acta - General Subjects, 2013, 1830, 4402-4406.                                                                                                  | 1.1 | 26        |
| 63 | Enhanced organicâ^'inorganic heterojunction of polypyrrole@Bi2WO6: Fabrication and application for sensitive photoelectrochemical immunoassay of creatine kinase-MB. Biosensors and Bioelectronics, 2019, 140, 111349.                                | 5.3 | 24        |
| 64 | Multichannel quartz crystal microbalance array: Fabrication, evaluation, application in biomarker detection. Analytical Biochemistry, 2016, 494, 85-92.                                                                                               | 1,1 | 23        |
| 65 | A Tunneling Dielectric Layer Free Floating Gate Nonvolatile Memory Employing Typeâ€I Core–Shell<br>Quantum Dots as Discrete Chargeâ€Irapping/Tunneling Centers. Small, 2019, 15, e1804156.                                                            | 5.2 | 23        |
| 66 | Hybridization chain reaction for regulating surface capacitance of organic photoelectrochemical transistor toward sensitive miRNA detection. Biosensors and Bioelectronics, 2022, 209, 114224.                                                        | 5.3 | 23        |
| 67 | Dynamic restructuring induced Cu nanoparticles with ideal nanostructure for selective multi-carbon compounds production via carbon dioxide electroreduction. Journal of Catalysis, 2020, 383, 42-50.                                                  | 3.1 | 22        |
| 68 | Ascorbic acid-mediated organic photoelectrochemical transistor sensing strategy for highly sensitive detection of heart-type fatty acid binding protein. Biosensors and Bioelectronics, 2022, 201, 113958.                                            | 5.3 | 22        |
| 69 | Giant dielectric response and enhanced thermal stability of multiferroic BiFeO3. Journal of Alloys and<br>Compounds, 2014, 600, 118-124.                                                                                                              | 2.8 | 21        |
| 70 | Effect of oxygen pressure on pulsed laser deposited WO3 thin films for photoelectrochemical water splitting. Journal of Alloys and Compounds, 2017, 722, 913-919.                                                                                     | 2.8 | 21        |
| 71 | Bipolar Modulation of the Ionic Circuit for Generic Organic Photoelectrochemical Transistor Logic and Sensor. Advanced Optical Materials, 2022, 10, .                                                                                                 | 3.6 | 20        |
| 72 | Thickness effects on structures and electrical properties of lead zirconate titanate thick films.<br>Ceramics International, 2008, 34, 991-995.                                                                                                       | 2.3 | 19        |

| #  | Article                                                                                                                                                                                         | IF            | CITATIONS     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|
| 73 | Efficient decomplexation of heavy metal-EDTA complexes by Co2+/peroxymonosulfate process: The critical role of replacement mechanism. Chemical Engineering Journal, 2020, 392, 123639.          | 6.6           | 19            |
| 74 | Origin of colossal dielectric response in (In + Nb) co-doped TiO2 rutile ceramics: a potential<br>electrothermal material. Scientific Reports, 2017, 7, 10144.                                  | 1.6           | 18            |
| 75 | A photoelectrochemical biosensor for rapid and ultrasensitive norovirus detection.<br>Bioelectrochemistry, 2020, 136, 107591.                                                                   | 2.4           | 18            |
| 76 | Revisit of amorphous semiconductor InGaZnO4: A new electron transport material for perovskite solar cells. Journal of Alloys and Compounds, 2019, 789, 276-281.                                 | 2.8           | 16            |
| 77 | Organic photoelectrochemical transistor detection of tear lysozyme. Sensors & Diagnostics, 2022, 1, 294-300.                                                                                    | 1.9           | 16            |
| 78 | 1-Butyl-3-Methylimidazolium Tetrafluoroborate Film as a Highly Selective Sensing Material for<br>Non-Invasive Detection of Acetone Using a Quartz Crystal Microbalance. Sensors, 2017, 17, 194. | 2.1           | 15            |
| 79 | Self-Assembled Peptide Nanostructures for Photoelectrochemical Bioanalysis Application: A<br>Proof-of-Concept Study. Analytical Chemistry, 2019, 91, 12606-12610.                               | 3.2           | 15            |
| 80 | Integration of a Miniature Quartz Crystal Microbalance with a Microfluidic Chip for Amyloid Beta-Aβ42 Quantitation. Sensors, 2015, 15, 25746-25760.                                             | 2.1           | 13            |
| 81 | Intrinsic and extrinsic effects on the ferroelectric switching of thin poly(vinylidene) Tj ETQq1 1 0.784314 rgB                                                                                 | [ /Overlock 1 | 0 Tf 50 422 T |
| 82 | Flexible TiO2/Au thin films with greatly enhanced photocurrents for photoelectrochemical water splitting. Journal of Alloys and Compounds, 2020, 815, 152471.                                   | 2.8           | 13            |
| 83 | Epitaxial ultrathin Au films on transparent mica with oxide wetting layer applied to organic light-emitting devices. Applied Physics Letters, 2019, 114, 081902.                                | 1.5           | 12            |
| 84 | Synthesis of Ni@NiSn Composite with High Lithiumâ€lon Diffusion Coefficient for Fastâ€Charging<br>Lithiumâ€lon Batteries. Global Challenges, 2020, 4, 1900073.                                  | 1.8           | 12            |
| 85 | A Novel Organic Electrochemical Transistor-Based Platform for Monitoring the Senescent Green<br>Vegetative Phase of Haematococcus pluvialis Cells. Sensors, 2017, 17, 1997.                     | 2.1           | 11            |
| 86 | Designing electron transporting layer for efficient perovskite solar cell by deliberating over nano-electrical conductivity. Solar Energy Materials and Solar Cells, 2019, 200, 109995.         | 3.0           | 10            |
| 87 | Effect of poly(vinyl acetate) on structures and properties of PbZr0.52Ti0.48O3 thick films. Journal of Applied Physics, 2007, 102, 084109.                                                      | 1.1           | 9             |
| 88 | Temperature-dependent reversible and irreversible processes in Nb-doped PbZrO3 relaxor ferroelectric thin films. Applied Physics Letters, 2015, 107, .                                          | 1.5           | 8             |
| 89 | Synthesis of ferroelectric KNbO 3 nanosheets by liquid exfoliation of layered perovskite K 2 NbO 3 F.<br>Journal of Alloys and Compounds, 2017, 698, 357-363.                                   | 2.8           | 8             |
| 90 | Nano-electrical conductivity guided optimization of pulsed laser deposited ZnO electron transporting layer for efficient perovskite solar cell. Journal of Power Sources, 2020, 468, 228392.    | 4.0           | 8             |

1

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Mean-Field Approach to Dielectric Relaxation in Giant Dielectric Constant Perovskite Ceramics.<br>Journal of Ceramics, 2013, 2013, 1-7.                                                                                     | 0.9 | 8         |
| 92  | Recent Advances of Nanostructured Materials for Photoelectrochemical Bioanalysis. Chemosensors, 2022, 10, 14.                                                                                                               | 1.8 | 8         |
| 93  | One-Step and Ligand-Free Modification of Au Nanoparticles on Highly Ordered TiO2 Nanotube Arrays<br>for Effective Photoelectrocatalytic Decontamination. Industrial & Engineering Chemistry<br>Research, 2020, 59, 668-675. | 1.8 | 7         |
| 94  | A Diagram of the Structure Evolution of Pb(Zn1/3Nb2/3) O3-9%PbTiO3 Relaxor Ferroelectric Crystals with Excellent Piezoelectric Properties. Crystals, 2017, 7, 130.                                                          | 1.0 | 6         |
| 95  | Novel graphitic sheets with ripple-like folds as an NCA cathode coating layer for high-energy-density<br>lithium-ion batteries. Nanotechnology, 2021, 32, 08LT01.                                                           | 1.3 | 6         |
| 96  | Lightâ€Fueled Organic Photoelectrochemical Transistor for Probing Membrane Protein in an H ell.<br>Advanced Materials Interfaces, 2022, 9, .                                                                                | 1.9 | 6         |
| 97  | Effect of poly(vinyl acetate) on structure and property of bismuth-doped strontium titanate thin films derived by sol–gel method. Ceramics International, 2008, 34, 997-1001.                                               | 2.3 | 5         |
| 98  | A novel protein binding strategy for energy-transfer-based photoelectrochemical detection of enzymatic activity of botulinum neurotoxin A. Electrochemistry Communications, 2018, 97, 114-118.                              | 2.3 | 5         |
| 99  | Morphotropic domain structures and dielectric relaxation in piezo-/ferroelectric<br>Pb(In1/2Nb1/2)O3–Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystals. Journal of Crystal Growth, 2016, 441, 33-40.                                  | 0.7 | 4         |
| 100 | Pulsed laser deposition of amorphous InGaZnO <sub>4</sub> as an electron transport layer for perovskite solar cells. Journal of Advanced Dielectrics, 2019, 09, 1950042.                                                    | 1.5 | 4         |
| 101 | PbZrO3-Based Antiferroelectric Thin Film Capacitors with High Energy Storage Density. International<br>Journal of Advanced Applied Physics Research, 2014, 1, 35-39.                                                        | 0.4 | 4         |
| 102 | POLYMER-ASSISTED MOD PREPARATION OF PbZr0.52Ti0.48O3 THICK FILMS FOR MEMS APPLICATIONS.<br>Integrated Ferroelectrics, 2006, 84, 75-82.                                                                                      | 0.3 | 3         |
| 103 | Realizing 60 GHz narrow-linewidth photonic microwaves with very low RF driving power. Laser<br>Physics Letters, 2016, 13, 126202.                                                                                           | 0.6 | 3         |
| 104 | Highly-Crystalline SnO <sub>2</sub> Thin Films for Efficient Planar Perovskite Solar Cells. ACS Applied<br>Energy Materials, 2022, 5, 5704-5710.                                                                            | 2.5 | 3         |
| 105 | Electrochemical-Assisted Reconstruction of Isoreticular Metal-Organic Framework-8 for Efficient<br>Electroreduction of CO <sub>2</sub> to CO. Journal of the Electrochemical Society, 2021, 168, 096503.                    | 1.3 | 2         |
| 106 | Sensors Based on Organic Thin Film Transistors. ECS Transactions, 2009, 16, 355-364.                                                                                                                                        | 0.3 | 1         |
| 107 | The Application of Organic Electrochemical Transistors in Biosensors. ECS Transactions, 2010, 33, 399-408.                                                                                                                  | 0.3 | 1         |
|     |                                                                                                                                                                                                                             |     |           |

New Micro- and Nanotechnologies for Electrochemical Biosensor Development. , 2019, , 279-313.

| #   | Article                                                                                                                                                                             | IF               | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 109 | Defect-Structure-Related Ferroelectric Properties of K0.5Na0.5NbO3 Lead-Free Piezoelectric Ceramics.<br>International Journal of Advanced Applied Physics Research, 2015, 2, 35-39. | 0.4              | 1            |
| 110 | Recent Advances in Electrochemical Sensor and Biosensors for Environmental Contaminants.<br>Nanotechnology in the Life Sciences, 2020, , 1-31.                                      | 0.4              | 1            |
| 111 | Glucose sensors based on solution-gated graphene transistors. Shenzhen Daxue Xuebao (Ligong) Tj ETQq1 1 0.7                                                                         | 843]4 rgE<br>0.1 | BT /Overlock |
| 112 | Study on dielectric properties of hyperbranched zinc phthalocyanine. Shenzhen Daxue Xuebao (Ligong) Tj ETQq0                                                                        | 0.0 rgBT         | /Oyerlock 10 |

113 Conductive organic materials for DNA biosensors. , 2016, , 107-147.