Luis J Bastarrachea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5340990/publications.pdf Version: 2024-02-01

	430874	454955
1,141	18	30
citations	h-index	g-index
32	32	1499
docs citations	times ranked	citing authors
	citations 32	1,14118citationsh-index3232

#	Article	IF	CITATIONS
1	Development of bioactive solid support for immobilized Lactobacillus casei biofilms and the production of lactic acid. Bioprocess and Biosystems Engineering, 2022, 45, 217-226.	3.4	5
2	Development of Bioactive Solid Support for Immobilized Lactococcus lactis Biofilms in Bioreactors for the Production of Nisin. Food and Bioprocess Technology, 2022, 15, 132-143.	4.7	4
3	Synergistic effect of highâ€intensity ultrasound, <scp>UVâ€A</scp> light, and natural preservatives on microbial inactivation in milk. Journal of Food Processing and Preservation, 2022, 46, .	2.0	4
4	Microbial Inactivation on a Processed Cheese Surface by UV-A Light. ACS Food Science & Technology, 2021, 1, 347-353.	2.7	3
5	Crystallization Behavior and Quality of Frozen Meat. Foods, 2021, 10, 2707.	4.3	18
6	Antimicrobial Light-Activated Polypropylene Modified with Chitosan: Characterization and Reusability. Journal of Agricultural and Food Chemistry, 2020, 68, 13076-13082.	5.2	9
7	Zein-modified antimicrobial polypropylene: Characterization and reusability upon UV-A light exposure. LWT - Food Science and Technology, 2020, 121, 108983.	5.2	8
8	Control Strategies for Postharvest Microbiological Safety of Produce During Processing, Marketing, and Quality Measures. , 2019, , 259-270.		1
9	Decontamination of raw produce by surface microdischarge and the evaluation of its damage to cellular components. Plasma Processes and Polymers, 2019, 16, 1800193.	3.0	7
10	Antimicrobial polypropylene with Îμ-poly(lysine): Effectiveness under UV-A light and food storage applications. LWT - Food Science and Technology, 2019, 102, 276-283.	5.2	12
11	Inactivation of <i>Escherichia Coli</i> O157:H7 and <i>Listeria Innocua</i> by Benzoic Acid, Ethylenediaminetetraacetic Acid and Their Combination in Model Wash Water and Simulated Spinach Washing. Journal of Food Science, 2018, 83, 1032-1040.	3.1	8
12	Inactivation of Listeria innocua by a combined treatment of low-frequency ultrasound and zinc oxide. LWT - Food Science and Technology, 2018, 88, 146-151.	5.2	29
13	Novel sanitization approach based on synergistic action of UV-A light and benzoic acid: Inactivation mechanism and a potential application in washing fresh produce. Food Microbiology, 2018, 72, 39-54.	4.2	31
14	Antimicrobial polymer coatings with efficacy against pathogenic and spoilage microorganisms. LWT - Food Science and Technology, 2018, 97, 546-554.	5.2	30
15	Photoirradiated caffeic acid as an antimicrobial treatment for fresh produce. FEMS Microbiology Letters, 2018, 365, .	1.8	13
16	On mechanism behind UV-A light enhanced antibacterial activity of gallic acid and propyl gallate against Escherichia coli O157:H7. Scientific Reports, 2017, 7, 8325.	3.3	40
17	Enhanced antimicrobial effect of ultrasound by the food colorant Erythrosin B. Food Research International, 2017, 100, 344-351.	6.2	22
18	Self-healing antimicrobial polymer coating with efficacy in the presence of organic matter. Applied Surface Science, 2016, 378, 479-488.	6.1	46

LUIS J BASTARRACHEA

#	Article	IF	CITATIONS
19	Active Packaging Coatings. Coatings, 2015, 5, 771-791.	2.6	111
20	Antimicrobial efficacy of N -halamine coatings prepared via dip and spray layer-by-layer deposition. Food and Bioproducts Processing, 2015, 96, 12-19.	3.6	30
21	Antimicrobial Coatings with Dual Cationic and <i>N</i> -Halamine Character: Characterization and Biocidal Efficacy. Journal of Agricultural and Food Chemistry, 2015, 63, 4243-4251.	5.2	59
22	Antimicrobial Food Equipment Coatings: Applications and Challenges. Annual Review of Food Science and Technology, 2015, 6, 97-118.	9.9	73
23	Antimicrobial Nâ€halamine Modified Polyethylene: Characterization, Biocidal Efficacy, Regeneration, and Stability. Journal of Food Science, 2014, 79, E887-97.	3.1	27
24	Development of antimicrobial stainless steel via surface modification with Nâ€halamines: Characterization of surface chemistry and Nâ€halamine chlorination. Journal of Applied Polymer Science, 2013, 127, 821-831.	2.6	51
25	Inactivation of Listeria monocytogenes on a polyethylene surface modified by layer-by-layer deposition of the antimicrobial N-halamine. Journal of Food Engineering, 2013, 117, 52-58.	5.2	25
26	Effects of Air and Freeze Drying on Phytochemical Content of Conventional and Organic Berries. Drying Technology, 2011, 29, 205-216.	3.1	72
27	Engineering Properties of Polymeric-Based Antimicrobial Films for Food Packaging: A Review. Food Engineering Reviews, 2011, 3, 79-93.	5.9	239
28	Release kinetics of nisin from biodegradable poly(butylene adipate-co-terephthalate) films into water. Journal of Food Engineering, 2010, 100, 93-101.	5.2	32
29	Biodegradable Poly(butylene adipateâ€ <i>co</i> â€ŧerephthalate) Films Incorporated with Nisin: Characterization and Effectiveness againstâ€, <i>Listeria innocua</i> . Journal of Food Science, 2010, 75, E215-24.	3.1	82
30	Apple Peelâ€Based Edible Film Development Using a Highâ€Pressure Homogenization. Journal of Food Science, 2009, 74, E372-81.	3.1	48
31	Novel Physical Methods for Food Preservation. , 0, , 694-704.		Ο