Lior Zangi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5340910/publications.pdf Version: 2024-02-01

LIOP ZANCI

#	Article	IF	CITATIONS
1	Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Medicine, 2014, 20, 616-623.	30.7	733
2	Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnology, 2013, 31, 898-907.	17.5	528
3	Pkm2 Regulates Cardiomyocyte Cell Cycle and Promotes Cardiac Regeneration. Circulation, 2020, 141, 1249-1265.	1.6	147
4	How to make a cardiomyocyte. Development (Cambridge), 2014, 141, 4418-4431.	2.5	126
5	mRNA-Based Protein Replacement Therapy for the Heart. Molecular Therapy, 2019, 27, 785-793.	8.2	101
6	Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA. Cell Research, 2013, 23, 1172-1186.	12.0	89
7	Optimizing Cardiac Delivery of Modified mRNA. Molecular Therapy, 2017, 25, 1306-1315.	8.2	84
8	Altering Sphingolipid Metabolism Attenuates Cell Death and Inflammatory Response After Myocardial Infarction. Circulation, 2020, 141, 916-930.	1.6	84
9	Insulin-Like Growth Factor 1 Receptor-Dependent Pathway Drives Epicardial Adipose Tissue Formation After Myocardial Injury. Circulation, 2017, 135, 59-72.	1.6	74
10	Ablation of a Single N-Glycosylation Site in Human FSTL 1 Induces Cardiomyocyte Proliferation and Cardiac Regeneration. Molecular Therapy - Nucleic Acids, 2018, 13, 133-143.	5.1	49
11	Synthetic Chemically Modified mRNA (modRNA): Toward a New Technology Platform for Cardiovascular Biology and Medicine. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a014035-a014035.	6.2	45
12	Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging. Nature Nanotechnology, 2020, 15, 398-405.	31.5	42
13	Cardiac Sca-1 ⁺ Cells Are Not Intrinsic Stem Cells for Myocardial Development, Renewal, and Repair. Circulation, 2018, 138, 2919-2930.	1.6	37
14	Optimizing Modified mRNA InÂVitro Synthesis Protocol for Heart Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2019, 14, 300-305.	4.1	34
15	Lipid Nanoparticles for Organ-Specific mRNA Therapeutic Delivery. Pharmaceutics, 2021, 13, 1675.	4.5	33
16	Modified <scp>mRNA</scp> as a therapeutic tool to induce cardiac regeneration in ischemic heart disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1367.	6.6	32
17	Modified mRNA as a Therapeutic Tool for the Heart. Cardiovascular Drugs and Therapy, 2020, 34, 871-880.	2.6	30
18	Lung-derived HMGB1 is detrimental for vascular remodeling of metabolically imbalanced arterial macrophages. Nature Communications, 2020, 11, 4311.	12.8	29

LIOR ZANGI

#	Article	IF	CITATIONS
19	Cardiovascular regenerative therapeutics via synthetic paracrine factor modified mRNA. Stem Cell Research, 2014, 13, 693-704.	0.7	26
20	Optimization of 5′ Untranslated Region of Modified mRNA for Use in Cardiac or Hepatic Ischemic Injury. Molecular Therapy - Methods and Clinical Development, 2020, 17, 622-633.	4.1	26
21	Direct reprogramming induces vascular regeneration post muscle ischemic injury. Molecular Therapy, 2021, 29, 3042-3058.	8.2	21
22	Synthesis of Modified mRNA for Myocardial Delivery. Methods in Molecular Biology, 2017, 1521, 127-138.	0.9	20
23	Specific Modified mRNA Translation System. Circulation, 2020, 142, 2485-2488.	1.6	18
24	Therapeutic Delivery of Pip4k2câ€Modified mRNA Attenuates Cardiac Hypertrophy and Fibrosis in the Failing Heart. Advanced Science, 2021, 8, 2004661.	11.2	14
25	In Vitro Synthesis of Modified RNA for Cardiac Gene Therapy. Methods in Molecular Biology, 2021, 2158, 281-294.	0.9	8
26	Synthetic MicroRNAs Stimulate Cardiac Repair. Circulation Research, 2017, 120, 1222-1223.	4.5	6
27	Delivery of Modified mRNA in a Myocardial Infarction Mouse Model. Journal of Visualized Experiments, 2020, , .	0.3	3
28	Cover Image, Volume 9, Issue 1. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1383.	6.6	0
29	Gene Therapy for Heart Disease: Modified mRNA Perspectives. , 0, , .		0