Bart Barlogie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/534076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thalidomide and Hematopoietic-Cell Transplantation for Multiple Myeloma. New England Journal of Medicine, 2006, 354, 1021-1030.	27.0	684
2	Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet, The, 2017, 389, 519-527.	13.7	684
3	Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood, 2001, 98, 492-494.	1.4	524
4	Superiority of Tandem Autologous Transplantation Over Standard Therapy for Previously Untreated Multiple Myeloma. Blood, 1997, 89, 789-793.	1.4	520
5	Treatment of multiple myeloma. Blood, 2004, 103, 20-32.	1.4	408
6	Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. British Journal of Haematology, 2007, 138, 176-185.	2.5	304
7	Results of autologous stem cell transplant in multiple myeloma patients with renal failure. British Journal of Haematology, 2001, 114, 822-829.	2.5	267
8	Second primary malignancies with lenalidomide therapy for newly diagnosed myeloma: a meta-analysis of individual patient data. Lancet Oncology, The, 2014, 15, 333-342.	10.7	256
9	Primary Myeloma Cells Growing in SCID-hu Mice: A Model for Studying the Biology and Treatment of Myeloma and Its Manifestations. Blood, 1998, 92, 2908-2913.	1.4	238
10	Thalidomide arm of Total Therapy 2 improves complete remission duration and survival in myeloma patients with metaphase cytogenetic abnormalities. Blood, 2008, 112, 3115-3121.	1.4	223
11	Autologous stem cell transplantation in elderly multiple myeloma patients over the age of 70 years. British Journal of Haematology, 2001, 114, 600-607.	2.5	199
12	Superior results of Total Therapy 3 (2003-33) in gene expression profiling–defined low-risk multiple myeloma confirmed in subsequent trial 2006-66 with VRD maintenance. Blood, 2010, 115, 4168-4173.	1.4	196
13	Curing myeloma at last: defining criteria and providing the evidence. Blood, 2014, 124, 3043-3051.	1.4	194
14	Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood, 2016, 128, 1735-1744.	1.4	170
15	Long-term outcome results of the first tandem autotransplant trial for multiple myeloma. British Journal of Haematology, 2006, 135, 158-164.	2.5	155
16	Preceding standard therapy is the likely cause of MDS after autotransplants for multiple myeloma. British Journal of Haematology, 1996, 95, 349-353.	2.5	148
17	American Society of Blood and Marrow Transplantation, European Society of Blood and Marrow Transplantation, BloodÂand Marrow Transplant Clinical Trials Network, and International Myeloma Working Group Consensus Conference on Salvage Hematopoietic Cell Transplantation in Patients with Relapsed Multiple Myeloma, Biology of Blood and Marrow Transplantation, 2015, 21, 2039-2051	2.0	146
18	Long-Term Follow-Up of Autotransplantation Trials for Multiple Myeloma: Update of Protocols Conducted by the Intergroupe Francophone du Myelome, Southwest Oncology Group, and University of Arkansas for Medical Sciences. Journal of Clinical Oncology, 2010, 28, 1209-1214.	1.6	144

#	Article	IF	CITATIONS
19	Treatment recommendations for patients with Waldenström macroglobulinemia (WM) and related disorders: IWWM-7 consensus. Blood, 2014, 124, 1404-1411.	1.4	138
20	Total therapy 2 without thalidomide in comparison with total therapy 1: role of intensified induction and posttransplantation consolidation therapies. Blood, 2006, 107, 2633-2638.	1.4	129
21	Complete remission sustained 3 years from treatment initiation is a powerful surrogate for extended survival in multiple myeloma. Cancer, 2008, 113, 355-359.	4.1	115
22	Prospective analysis of antigen-specific immunity, stem-cell antigens, and immune checkpoints in monoclonal gammopathy. Blood, 2015, 126, 2475-2478.	1.4	108
23	Assessment of Total Lesion Glycolysis by 18F FDG PET/CT Significantly Improves Prognostic Value of GEP and ISS in Myeloma. Clinical Cancer Research, 2017, 23, 1981-1987.	7.0	97
24	Anti-myeloma activity of pamidronate in vivo. British Journal of Haematology, 1998, 103, 530-532.	2.5	96
25	Seven-year median time to progression with thalidomide for smoldering myeloma: partial response identifies subset requiring earlier salvage therapy for symptomatic disease. Blood, 2008, 112, 3122-3125.	1.4	90
26	High-dose therapy and immunomodulatory drugs in multiple myeloma. Seminars in Oncology, 2002, 29, 26-33.	2.2	88
27	Tight Junction Protein 1 Modulates Proteasome Capacity and Proteasome Inhibitor Sensitivity in Multiple Myeloma via EGFR/JAK1/STAT3 Signaling. Cancer Cell, 2016, 29, 639-652.	16.8	85
28	Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance. Blood, 2016, 127, 1896-1906.	1.4	81
29	The Spectrum and Clinical Impact of Epigenetic Modifier Mutations in Myeloma. Clinical Cancer Research, 2016, 22, 5783-5794.	7.0	81
30	Multicolour spectral karyotyping identifies new translocations and a recurring pathway for chromosome loss in multiple myeloma. British Journal of Haematology, 2001, 112, 167-174.	2.5	74
31	Cytogenetically defined myelodysplasia after melphalan-based autotransplantation for multiple myeloma linked to poor hematopoietic stem-cell mobilization: the Arkansas experience in more than 3000 patients treated since 1989. Blood, 2008, 111, 94-100.	1.4	73
32	Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat. BMC Bioinformatics, 2015, 16, 63.	2.6	73
33	MAF protein mediates innate resistance to proteasome inhibition therapy in multiple myeloma. Blood, 2016, 128, 2919-2930.	1.4	57
34	The level of deletion 17p and bi-allelic inactivation of <i>TP53</i> has a significant impact on clinical outcome in multiple myeloma. Haematologica, 2017, 102, e364-e367.	3.5	57
35	Recombinant human erythropoietin and the anemia of multiple myeloma. Stem Cells, 1993, 11, 88-94.	3.2	49
36	Superiority of Lenalidomide (Len) Plus High-Dose Dexamethasone (HD) Compared to HD Alone as Treatment of Newly-Diagnosed Multiple Myeloma (NDMM): Results of the Randomized, Double-Blinded, Placebo-Controlled SWOG Trial S0232 Blood, 2007, 110, 77-77.	1.4	48

#	Article	IF	CITATIONS
37	Treatment to suppression of focal lesions on positron emission tomography-computed tomography is a therapeutic goal in newly diagnosed multiple myeloma. Haematologica, 2018, 103, 1047-1053.	3.5	47
38	Patterns of Central Nervous System Involvement in Relapsed and Refractory Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, 211-214.	0.4	46
39	Bortezomib, Lenalidomide and Dexamethasone Vs. Lenalidomide and Dexamethasone in Patients (Pts) with Previously Untreated Multiple Myeloma without an Intent for Immediate Autologous Stem Cell Transplant (ASCT): Results of the Randomized Phase III Trial SWOG S0777. Blood, 2015, 126, 25-25.	1.4	45
40	Four genes predict high risk of progression from smoldering to symptomatic multiple myeloma (SWOG S0120). Haematologica, 2015, 100, 1214-1221.	3.5	44
41	Evidence of an epigenetic origin for high-risk 1q21 copy number aberrations in multiple myeloma. Blood, 2015, 125, 3756-3759.	1.4	41
42	The future of autologous stem cell transplantation in myeloma. Blood, 2014, 124, 328-333.	1.4	40
43	Reiterative Survival Analyses of Total Therapy 2 for Multiple Myeloma Elucidate Follow-Up Time Dependency of Prognostic Variables and Treatment Arms. Journal of Clinical Oncology, 2010, 28, 3023-3027.	1.6	39
44	<i>BRAF</i> and <i>DIS3</i> Mutations Associate with Adverse Outcome in a Long-term Follow-up of Patients with Multiple Myeloma. Clinical Cancer Research, 2020, 26, 2422-2432.	7.0	37
45	Paradoxical expression of INK4c in proliferative multiple myeloma tumors: bi-allelic deletion vs increased expression. Cell Division, 2006, 1, 23.	2.4	36
46	Clinical characteristics and prognostic factors in multiple myeloma patients with light chain deposition disease. American Journal of Hematology, 2017, 92, 739-745.	4.1	36
47	Bone marrow microenvironments that contribute to patient outcomes in newly diagnosed multiple myeloma: A cohort study of patients in the Total Therapy clinical trials. PLoS Medicine, 2020, 17, e1003323.	8.4	33
48	Thalidomide and CC-5013 in multiple myeloma: the University of Arkansas experience. Seminars in Hematology, 2003, 40, 33-38.	3.4	32
49	Genome-wide association study identifies variation at 6q25.1 associated with survival in multiple myeloma. Nature Communications, 2016, 7, 10290.	12.8	31
50	Risk stratification of smoldering multiple myeloma: predictive value of free light chains and group-based trajectory modeling. Blood Advances, 2018, 2, 1470-1479.	5.2	31
51	The Pattern of Mesenchymal Stem Cell Expression Is an Independent Marker of Outcome in Multiple Myeloma. Clinical Cancer Research, 2018, 24, 2913-2919.	7.0	30
52	Marked Activity of Velcade Plus Thalidomide (V+T) in Advanced and Refractory Multiple Myeloma (MM) Blood, 2004, 104, 1480-1480.	1.4	29
53	Cyclin D1 and E2F-1 immunoreactivity in bone marrow biopsy specimens of multiple myeloma: relationship to proliferative activity, cytogenetic abnormalities and DNA ploidy. British Journal of Haematology, 2001, 112, 776-782.	2.5	28
54	Prognostic factor analyses of myeloma survival with intergroup trial S9321 (INT 0141): examining whether different variables govern different time segments of survival. Annals of Hematology, 2011, 90, 423-428.	1.8	28

#	Article	IF	CITATIONS
55	The use of molecular-based risk stratification and pharmacogenomics for outcome prediction and personalized therapeutic management of multiple myeloma. International Journal of Hematology, 2011, 94, 321-333.	1.6	27
56	Genomic analysis of primary plasma cell leukemia reveals complex structural alterations and high-risk mutational patterns. Blood Cancer Journal, 2020, 10, 70.	6.2	27
57	CYR61/CCN1 overexpression in the myeloma microenvironment is associated with superior survival and reduced bone disease. Blood, 2014, 124, 2051-2060.	1.4	26
58	The prognostic value of the depth of response in multiple myeloma depends on the time of assessment, risk status and molecular subtype. Haematologica, 2017, 102, e313-e316.	3.5	26
59	Clinical relevance of intracellular vascular endothelial growth factor levels in B-cell chronic lymphocytic leukemia. Blood, 2000, 96, 768-770.	1.4	25
60	The varied distribution and impact of <i>RAS</i> codon and other key DNA alterations across the translocation cyclin D subgroups in multiple myeloma. Oncotarget, 2017, 8, 27854-27867.	1.8	25
61	Distinct T-cell clonal expansion in the vicinity of tumor cells in plasmacytoma. Cancer, 2001, 91, 900-908.	4.1	23
62	An acquired high-risk chromosome instability phenotype in multiple myeloma: Jumping 1q Syndrome. Blood Cancer Journal, 2019, 9, 62.	6.2	23
63	Serum Free-Lite Chain (sFLC) Assay in Multiple Myeloma (MM): Clinical Correlates and Prognostic Implications in Newly Diagnosed MM Patients Treated with Total Therapy 2 or 3 (TT2/3) Blood, 2005, 106, 3490-3490.	1.4	23
64	Gene Expression Profiling of Extramedullary Disease-Related Toward Identification of a Terminal Disease Pathway in Multiple Myeloma. Blood, 2015, 126, 1777-1777.	1.4	23
65	Bortezomib (Velcadeâ"¢) + Adriamycinâ"¢ + Thalidomide + Dexamethasone (VATD) as an Effective Regimen in Patients with Refractory or Relapsed Multiple Myeloma (MM) Blood, 2004, 104, 2399-2399.	1.4	22
66	Investigation of a gene signature to predict response to immunomodulatory derivatives for patients with multiple myeloma: an exploratory, retrospective study using microarray datasets from prospective clinical trials. Lancet Haematology,the, 2017, 4, e443-e451.	4.6	20
67	Precision Medicine for Relapsed Multiple Myeloma on the Basis of an Integrative Multiomics Approach. JCO Precision Oncology, 2018, 2018, 1-17.	3.0	20
68	Identification of Novel Transcriptional Consequences of Activation and Inactivation of TP53 in Multiple Myeloma Blood, 2007, 110, 393-393.	1.4	20
69	Hematopoietic Stem Cell Transplants for Multiple Myeloma. Leukemia and Lymphoma, 1996, 22, 25-36.	1.3	18
70	Mesenchymal stem cells gene signature in highâ€risk myeloma bone marrow linked to suppression of distinct IGFBP2â€expressing small adipocytes. British Journal of Haematology, 2019, 184, 578-593.	2.5	18
71	Elevated Expression of CKS1B at 1q21 Is Highly Correlated with Short Survival in Myeloma Blood, 2004, 104, 77-77.	1.4	18
72	Superior 12-Year Survival After at Least 4-Year Continuous Remission with Tandem Transplantations for Multiple Myeloma. Clinical Lymphoma and Myeloma, 2006, 6, 469-474.	1.4	16

#	Article	IF	CITATIONS
73	Completion of premaintenance phases in total therapies 2 and 3 improves clinical outcomes in multiple myeloma. Cancer, 2008, 112, 2720-2725.	4.1	13
74	Adverse Metaphase Cytogenetics Can Be Overcome by Adding Bortezomib and Thalidomide to Fractionated Melphalan Transplants. Clinical Cancer Research, 2017, 23, 2665-2672.	7.0	13
75	Identification of Three Novel Chromosomal Translocation Partners Involving the Immunoglobulin Loci in Newly Diagnosed Myeloma and Human Myeloma Cell Lines Blood, 2005, 106, 1552-1552.	1.4	13
76	Complete response in myeloma: a Trojan horse?. Blood, 2006, 108, 2134-2134.	1.4	12
77	Lack of Spleen Signal on Diffusion Weighted MRI is associated with High Tumor Burden and Poor Prognosis in Multiple Myeloma: A Link to Extramedullary Hematopoiesis?. Theranostics, 2019, 9, 4756-4763.	10.0	12
78	Stem cell mutations can be detected in myeloma patients years before onset of secondary leukemias. Blood Advances, 2019, 3, 3962-3967.	5.2	12
79	Addition of Bortezomib (Velcadeâ,,¢) to High Dose Melphalan (Vel-Mel) as an Effective Conditioning Regimen with Autologous Stem Cell Support in Multiple Myeloma (MM) Blood, 2004, 104, 929-929.	1.4	12
80	Primary myeloma interaction and growth in coculture with healthy donor hematopoietic bone marrow. BMC Cancer, 2015, 15, 864.	2.6	11
81	Changes in the Expression of Proteasome Genes in Tumor Cells Following Short-Term Proteasome Inhibitor Therapy Predicts Survival in Multiple Myeloma Treated with Bortezomib-Containing Multi-Agent Chemotherapy. Blood, 2008, 112, 733-733.	1.4	10
82	Jumping Translocations 1q12 Contribute to Copy Number (CN) Alterations in Multiple Myeloma (MM): Unexpected Focal Amplifications of Receptor Chromosomes (RC). Blood, 2011, 118, 298-298.	1.4	10
83	The effect of novel therapies in high-molecular-risk multiple myeloma. Clinical Advances in Hematology and Oncology, 2017, 15, 870-879.	0.3	10
84	Could CR mean cure?. Blood, 2011, 118, 483-483.	1.4	9
85	Gene Expression Profiling Reveals Aberrant T-cell Marker Expression on Tumor Cells of Waldenström's Macroglobulinemia. Clinical Cancer Research, 2019, 25, 201-209.	7.0	9
86	Waldenström's macroglobulinemia. Current Treatment Options in Oncology, 2000, 1, 97-103.	3.0	8
87	Protective Effect of VELCADE® on Thalidomide-Associated Deep Vein Thrombosis (DVT) Blood, 2004, 104, 4914-4914.	1.4	8
88	The Clinical Impact of Macrofocal Disease in Multiple Myeloma Differs Between Presentation and Relapse. Blood, 2016, 128, 4431-4431.	1.4	8
89	Autologous Expanded Natural Killer Cells As a New Therapeutic Option for High-Risk Myeloma. Blood, 2011, 118, 2918-2918.	1.4	8
90	Modeling for Cure with Total Therapy (TT) Trials for Newly Diagnosed Multiple Myeloma (MM): Let the Math Speak Blood, 2009, 114, 744-744.	1.4	7

#	Article	IF	CITATIONS
91	High Risk Multiple Myeloma Demonstrates Marked Spatial Genomic Heterogeneity Between Focal Lesions and Random Bone Marrow; Implications for Targeted Therapy and Treatment Resistance. Blood, 2015, 126, 20-20.	1.4	7
92	Fulminant Onset of Acute Leukemia (FOAL) After Total Therapies (TT) for Multiple Myeloma (MM): Absence of MDS Pathological Criteria within 3 Months of Prior MM Follow-up. Blood, 2012, 120, 1458-1458.	1.4	7
93	Effect of low-dose granulocyte-macrophage colony-stimulating factor (LD-GM-CSF) on platelet transfusion-dependent thrombocytopenia. American Journal of Hematology, 1994, 47, 203-207.	4.1	6
94	A common genetic variant in 19q13·3 is associated with outcome of multiple myeloma patients treated with Total Therapy 2 and 3. British Journal of Haematology, 2016, 174, 991-993.	2.5	6
95	Total Therapy 2 (TT2) for Multiple Myeloma (MM): Thalidomide (T) Effects Superior Complete Response (CR) and Event-Free Survival (EFS); Similar Overall Survival (OS) Linked to Shorter Post-Relapse Survival Blood, 2005, 106, 423-423.	1.4	6
96	Cell Surface CXCR4 and BTK Expression Are Associated in Myeloma Cells and Osteoclast Precursors and Mediate Myeloma Cell Homing and Clonogenicity, and Osteoclastogenesis. Blood, 2011, 118, 884-884.	1.4	6
97	Prognostic Significance of DNA/Cig Flow Cytometry Assay in the â€~'era―of Novel Therapies in Multiple Myeloma (MM) Blood, 2012, 120, 2918-2918.	1.4	6
98	Feasibility of Outpatient Stem Cell Transplantation in Multiple Myeloma and Risk Factors Predictive of Hospital Admission. Journal of Clinical Medicine, 2022, 11, 1640.	2.4	6
99	Allelic mutations in noncoding genomic sequences construct novel transcription factor binding sites that promote gene overexpression. Genes Chromosomes and Cancer, 2015, 54, 692-701.	2.8	5
100	A Validated Gene Expression Signature of High Risk Multiple Myeloma Is Defined by Deregulated Expression of Genes Mapping to Chromosome 1 Blood, 2006, 108, 111-111.	1.4	5
101	Higher Expressions of PTH Receptor Type 1 and/or 2 in Bone Marrow Is Associated to Longer Survival in Newly Diagnosed Myeloma Patients Enrolled in Total Therapy 3. Blood, 2014, 124, 3409-3409.	1.4	5
102	Gene Expression Profiling (GEP) Analysis of Plasma Cells (PC) Obtained From MRI-Defined Focal Lesions (FL) Under CT-Guided Fine-Needle Aspiration Provides Better Risk Stratification in Patients with Multiple Myeloma. Blood, 2011, 118, 2896-2896.	1.4	5
103	Highâ€risk transcriptional profiles in multiple myeloma are an acquired feature that can occur in any subtype and more frequently with each subsequent relapse. British Journal of Haematology, 2021, 195, 283-286.	2.5	4
104	Deficiency of Mannose-Binding Lectin Is a Risk Factor for Invasive Pulmonary Aspergillosis in Patients with Multiple Myeloma: An Analysis of 482 Patients. Blood, 2008, 112, 667-667.	1.4	4
105	Comparing Toxicities and Survival Outcomes with Total Therapy 4 (TT4) for 70-Gene (R70)-Defined Low-Risk Multiple Myeloma (MM) to Results Obtained with Total Therapy 3 Protocols TT3A and TT3B. Blood, 2010, 116, 368-368.	1.4	4
106	Total Therapy 4 (TT4) for GEP70-Defined Low Risk Clinical Multiple Myeloma (CMM): Results of Patients Randomized to a Standard v Light Rrm (S-TT4 v L-TT4). Blood, 2014, 124, 1199-1199.	1.4	4
107	Targeted MEK Inhibition in Patients with Previously Treated Multiple Myeloma. Blood, 2014, 124, 4775-4775.	1.4	4
108	Can autologous bone marrow transplantation improve systolic function in patients with multiple myeloma related cardiac amyloidosis?. International Journal of Cardiology, 2014, 172, 265-266.	1.7	3

#	Article	IF	CITATIONS
109	Using a latent class model to refine risk stratification in multiple myeloma. Statistics in Medicine, 2015, 34, 2971-2980.	1.6	3
110	Clinical Presentation and Gene Expression Profiling of Immunoglobulin M Multiple Myeloma Compared With Other Myeloma Subtypes and Waldenström Macroglobulinemia. Journal of Global Oncology, 2018, 4, 1-8.	0.5	3
111	Management of Patients with Multiple Myeloma (MM) Failing Total Therapy 2 (TT 2) According to Thalidomide (THAL) Randomization Blood, 2004, 104, 1483-1483.	1.4	3
112	FDG PET Functional Imaging in Multiple Myeloma - Clinically Important Caveats, Pitfalls, and Pearls Blood, 2004, 104, 2473-2473.	1.4	3
113	Curing Multiple Myeloma (MM) with Total Therapy (TT). Blood, 2014, 124, 195-195.	1.4	3
114	Waldenstrom's Macroglobulinemia Associated Bone Disease the UAMS Experience. Blood, 2014, 124, 2999-2999.	1.4	3
115	Characterization of the Mutational Landscape of Multiple Myeloma Using Comprehensive Genomic Profiling. Blood, 2014, 124, 3418-3418.	1.4	3
116	Mesenchymal Stem Cells Preconditioned with Myeloma Cells from High-Risk Patients Support the Growth of Myeloma Cells from Low-Risk Patients. Blood, 2016, 128, 3304-3304.	1.4	3
117	The Conventional Body Surface Area (BSA) Method of Calculating the Dose of Melphalan (MEL) Results in Widely Variable MEL Exposure and Mucositis Risk in Myeloma (MM) Patients Undergoing Autologous Stem Cell Transplantation (ASCT) Blood, 2004, 104, 1159-1159.	1.4	3
118	Inducible Heme Oxygenase 1 (HMOX1) Promotes Osteoblastogenesis, and Inhibits Osteoclastogenesis and Myeloma-Induced Bone Disease. Blood, 2011, 118, 627-627.	1.4	3
119	Lenalidomide Suppression of Multiple Myeloma Cell Proliferation Is Associated with Downregulation of LEF/TCF Activity. Blood, 2012, 120, 5014-5014.	1.4	3
120	Advanced Osteolytic Lesions (OL), Mobilization and Collection of Hematopoietic Progenitor Cells (HPC) in Multiple Myeloma (MM). Blood, 2014, 124, 3858-3858.	1.4	3
121	Going with the flow, and beyond, in myeloma. Blood, 2008, 112, 3917-3918.	1.4	2
122	Walking on myeloma. Blood, 2018, 132, 1724-1724.	1.4	2
123	Timing of Autologous Stem Cell Transplantation for Multiple Myeloma in the Era of Current Therapies. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e734-e751.	0.4	2
124	Increased Muscle CXCR4 Expression in the Setting of Rare Muscle-invasive Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e341-e344.	0.4	2
125	Analysis of the Sub-Clonal Structure of Smoldering Myeloma over Time Provides a New Means of Disease Monitoring and Highlights Evolutionary Trajectories Leading to Myeloma. Blood, 2019, 134, 4333-4333.	1.4	2
126	A Complete Remission (CR) Is Not a Prerequisite for Prolonged Survival after Autotransplants for Multiple Myeloma Blood, 2004, 104, 926-926.	1.4	2

#	Article	IF	CITATIONS
127	The Anti-Myeloma Effect of Bortezomib Is Associated with Osteoblastic Activity Blood, 2005, 106, 510-510.	1.4	2
128	Exploitation of Novel Hyperdiploid and Nonhyperdiploid Myeloma Cell Lines for Studying Innovative Interventions for Myeloma and Its Associated Bone Disease Blood, 2007, 110, 548-548.	1.4	2
129	Phase II Study of Pomalidomide (Pom) in Genomically Defined High Risk Relapsed and Refractory Multiple Myeloma (RRMM). Blood, 2012, 120, 4083-4083.	1.4	2
130	Fresh Ex Vivo Expanded Natural Killer Cells Demonstrate Robust Proliferation in Vivo in High-Risk Relapsed Multiple Myeloma (MM) Patients. Blood, 2012, 120, 579-579.	1.4	2
131	Validation of a Predictive Formula for Collection of Hematopoietic Progenitor Cells (HPC) By Leukapheresis at 2 Institutions Using 4 Different Machine Protocols. Blood, 2014, 124, 2458-2458.	1.4	2
132	The Composition and Clinical Impact of Focal Lesions and Their Impact on the Microenvironment in Myeloma. Blood, 2015, 126, 1806-1806.	1.4	2
133	Melphalan Affects Genes Critical for Myeloma Survival, Homing, and Response to Cytokines and Chemokines. Blood, 2015, 126, 1808-1808.	1.4	2
134	Impact of Minimal Residual Disease in High and Standard Risk Multiple Myeloma. Blood, 2015, 126, 2979-2979.	1.4	2
135	Specific Exosomal microRNA Are Differentially Expressed Between High and Low-Risk Myeloma Suggesting They Are Pathogenically Important. Blood, 2015, 126, 4189-4189.	1.4	2
136	Disease and Outcome Disparities in Multiple Myeloma (MM): Exploring the Role of Race/Ethnicity and Obesity in Cooperative Group Clinical Trials. Blood, 2016, 128, 1192-1192.	1.4	2
137	Extensive Regional Intra-Clonal Heterogeneity in Multiple Myeloma - Implications for Diagnostics, Risk Stratification and Targeted Treatment. Blood, 2016, 128, 3278-3278.	1.4	2
138	A 15 Hour Dosing-Collection Interval for Plerixafor Is at Least as Effective as the Standard 10 Hour Interval Blood, 2009, 114, 2152-2152.	1.4	2
139	Non-Producing Multiple Myeloma (MM) Is a Distinct Subset Of Non-Secretory MM Characterized By High Cyclin D1 Expression and Decreased Progression Free Survival. Blood, 2013, 122, 1911-1911.	1.4	2
140	A Prognostic 51-Gene Signature Linked to Abnormal Metaphase Cytogenetics Identifies Myeloma Patients Who Benefit from Fractionated Melphalan Dosing and Added Bortezomib, Thalidomide and Dexamethasone As Conditioning for Autologous Stem Cell Transplant. Blood, 2015, 126, 3181-3181.	1.4	2
141	Long-Term Outcome of Total Therapy Regimens: Impact of Molecular Subgroups. Blood, 2019, 134, 3309-3309.	1.4	2
142	Multiple Myeloma and Chronic Lymphocytic Leukemia: Commonalities and Differences in Biology and Therapy. Leukemia and Lymphoma, 1991, 5, 27-32.	1.3	1
143	Muscular Relapse in a Patient With Multiple Myeloma. Journal of Clinical Oncology, 2015, 33, e125-e129.	1.6	1
144	CAâ€125 secreting IgG kappa multiple myeloma. American Journal of Hematology, 2016, 91, E457-8.	4.1	1

#	Article	IF	CITATIONS
145	Drug Combinations with Transplantation for Myeloma. New England Journal of Medicine, 2017, 377, 91-94.	27.0	1
146	Imipridone ONC201: combination therapy in hematologic malignancies. Cell Cycle, 2018, 17, 1947-1948.	2.6	1
147	Treatment Bridging With a 28-Day Metronomic Therapy (Metro-28) for Relapsed Refractory Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 129-132.	0.4	1
148	The Gene Expression Signatures (GEP) of Whole Bone Marrow Biopsies (Bx) from Patients with Multiple Myeloma (MM) in Remission Reflect Disease Risk and Therapy Blood, 2005, 106, 1547-1547.	1.4	1
149	Stimulation with K562 Cells Transfected with 4-1BBL and IL-15 Expands and Activates Natural Killer (NK) Cells with Specific Cytotoxicity for Multiple Myeloma (MM) Blood, 2005, 106, 3392-3392.	1.4	1
150	SNP Genotypes Show Association with Common Toxicities during both VAD Induction and High Dose Melphalan with Autologous Transplant Support in Intergroup Trial S9321 for Myeloma: From the Bank on a Cure Blood, 2005, 106, 3488-3488.	1.4	1
151	Gene Expression Profiling (GEP) of Purified Plasma Cells at Baseline and 48hr after-Dexamethasone (D) or Thalidomide (T) Improve Outcome Predicition of Baseline GEP Alone in Patients with Multiple Myeloma (MM) Treated with Total Therapy 2 (TT2) Blood, 2005, 106, 502-502.	1.4	1
152	A Gene Expression Signature of Benign Monoclonal Gammopathy Evident in Multiple Myeloma Is Linked to Good Prognosis Blood, 2006, 108, 3393-3393.	1.4	1
153	A Gene Expression-Based Risk Stratification Model Developed in Newly Diagnosed Multiple Myeloma Treated with High Dose Therapy Is Predictive of Outcome in Relapsed Disease Treated with Single Agent Bortezomib Blood, 2007, 110, 656-656.	1.4	1
154	Secreted Frizzled-Related Protein-3 (sFRP3) Is Produced by Myeloma Cells and Augments Wnt3a-Induced Differentiation of Mesenchymal Stem Cells and OPG Production in Osteoblasts. Blood, 2011, 118, 808-808.	1.4	1
155	Hyperhaploid Multiple Myeloma (MM): A Rare Karyotypic Subgroup Retaining Disomy 18 and 1q12â^1⁄423 Amplification. Blood, 2012, 120, 3983-3983.	1.4	1
156	The Antimalarial Agent Artesunate Exerts Its Antimyeloma Activity By Affecting The Mitochondria and The Reactive Oxygen Status Of The Myeloma Cells and Its Efficacy Depends On Intracellular Bivalent Iron Levels. Blood, 2013, 122, 4444-4444.	1.4	1
157	Further Evolution of Metronomic Therapy Extended to 28 Days (Metro28) for Relapsed Refractory Multiple Myeloma (RRMM). Blood, 2014, 124, 2128-2128.	1.4	1
158	Modified Combat Removes Batch Effects from Myeloma Cell GEP–derived Risk Scores and Molecular Subgroup Assignment. Blood, 2014, 124, 3355-3355.	1.4	1
159	Evidence of an Epigenetic Origin for High-Risk 1q21 Copy Number Aberrations in Multiple Myeloma. Blood, 2014, 124, 725-725.	1.4	1
160	Upfront 28-Day Metronomic Therapy for High-Risk Multiple Myeloma (HRMM). Blood, 2015, 126, 1843-1843.	1.4	1
161	Comprehensive Genomic Profiling of Multiple Myeloma in the Course of Clinical Care Identifies Targetable and Prognostically Significant Genomic Alterations. Blood, 2015, 126, 369-369.	1.4	1
162	The Impact of Combination Chemotherapy and Tandem Stem Cell Transplant on Clonal Substructure and Mutational Pattern at Relapse of MM. Blood, 2015, 126, 372-372.	1.4	1

#	Article	IF	CITATIONS
163	Signatures of Mesenchymal Cell Lineages and Microenvironment Factors Are Dysregulated in High Risk Myeloma. Blood, 2016, 128, 2065-2065.	1.4	1
164	The 70-Gene MyPRSR prognostic Risk Score Signature Predicts Increased Risk of Progression from MGUS to Multiple Myeloma Requring Treatment. Blood, 2016, 128, 3275-3275.	1.4	1
165	Automated Multiparameter Flow Cytometry (MFC) Immunophenotyping for Reproducible Identification of High Risk Smoldering Multiple Myeloma (SMM). Blood, 2016, 128, 373-373.	1.4	1
166	Use of Multiple Myeloma 70-Gene Prognostic Risk Score As a Continuous Predicitor of Patient Outcome. Blood, 2016, 128, 5614-5614.	1.4	1
167	Network Modeling Reveals CDC42BPA and CLEC11A As Novel Driver Genes of t(4; 14) Multiple Myeloma. Blood, 2016, 128, 802-802.	1.4	1
168	The Time Required To Achieve Complete Remission (CR) during Intensive Therapy on Total Therapy 2 Does Not Influence Event Free Survival (EFS), While Improvement in Quality of Response with Ongoing Treatment Clearly Does Blood, 2005, 106, 1157-1157.	1.4	1
169	Bortezomib Down-Regulates HLA Class I and Enhances Natural Killer Cell Mediated Lysis of Myeloma Blood, 2006, 108, 3498-3498.	1.4	1
170	A Gene Expression Based Proliferation Index as Independent Prognostic Factor in Multiple Myeloma Blood, 2008, 112, 1667-1667.	1.4	1
171	Proteasome Inhibitor, Bortezomib Induces Mesenchymal Stem Cells toward Osteoblast Differentiation through Wnt-Independent Activation of Beta-catenin/TCF Signaling. Blood, 2008, 112, 644-644.	1.4	1
172	Implications of Serial Magnetic Resonance Imaging and Positron Emission Tomography Scanning for Survival of Untreated Myeloma Patients Treated with Total Therapy 3. Blood, 2011, 118, 3082-3082.	1.4	1
173	MAF Protein Elicits Innate Resistance To Bortezomib In Multiple Myeloma. Blood, 2013, 122, 281-281.	1.4	1
174	Macrophages Activation By ICAM1 Antibody Combined With Lenalidomide Has Enhanced Anti-Myeloma Activity In a Supportive Microenvironment In Vivo and In Vitro. Blood, 2013, 122, 1926-1926.	1.4	1
175	ATRA Upregulates Cell Surface CD1D on Myeloma Cells and Sensitizes Them to iNKT Cell-Mediated Lysis. Blood, 2014, 124, 2102-2102.	1.4	1
176	Mafb Protein Confers Primary Resistance of Myeloma to Proteasome Inhibitors. Blood, 2014, 124, 2091-2091.	1.4	1
177	Stem Cell-like Characteristics of MM Plasma Cells Vary By ROS Levels: Implications for Targeted Therapy. Blood, 2015, 126, 1820-1820.	1.4	1
178	Defining the Impact of Tandem Autologous Stem Cell Transplantation in Multiple Myeloma: A Case-Match Analysis in the Total Therapy Trials. Blood, 2015, 126, 3182-3182.	1.4	1
179	Identification of Biomarkers Associated with MAF-Mediated Resistance to Proteasome Inhibitors in t(14;16) Multiple Myeloma. Blood, 2015, 126, 3020-3020.	1.4	1
180	Integrative Network Analysis of Newly Diagnosed Multiple Myeloma Identifies a Novel RNA-Seq Based High Riskgene Signature. Blood, 2016, 128, 3285-3285.	1.4	1

#	Article	IF	CITATIONS
181	High Risk Myeloma Is Characterized By the Bi-Allelic Inactivation of CDKN2C and RB1. Blood, 2016, 128, 4416-4416.	1.4	1
182	The role of transplant in multiple myeloma. Clinical Advances in Hematology and Oncology, 2005, 3, 604-6.	0.3	1
183	Meeting summary. Stem Cells, 1995, 13, 164-165.	3.2	0
184	Reply to J.C. Regelink et al. Journal of Clinical Oncology, 2010, 28, e744-e745.	1.6	0
185	Hemophagocytic relapsed intramedullary plasmacytoma. International Journal of Hematology, 2020, 111, 888-890.	1.6	0
186	Low Incidence of Cytogenetically-Defined MDS/AML among Newly Diagnosed Patients Treated According to Total Therapy 1 (TT 1) or Total Therapy 2 (TT 2) Blood, 2004, 104, 940-940.	1.4	0
187	NY-ESO-1 Specific T-Cells Are Spontaneously Present in High-Risk Myeloma and Kill Primary Myeloma Cells Blood, 2004, 104, 2454-2454.	1.4	0
188	Increased Bone Marrow Iron Stores, Severe Mucositis and Large Area under the Curve (AUC) of Profound Neutropenia Predict Severe Infection in 382 Myeloma Patients Undergoing Melphalan - Autologous Stem Cell Transplantation (MEL-ASCT) Blood, 2004, 104, 1158-1158.	1.4	0
189	Total Therapy 2 (TT 2) for Newly Diagnosed Patients with Multiple Myeloma (MM): Examination of Dose Effect of Thalidomide (T) among Those Randomized to T Blood, 2004, 104, 934-934.	1.4	0
190	Generation of Tumor-Specific Cytotoxic T Lymphocytes in Multiple Myeloma Using Dendritic Cells Pulsed with Tumor-Derived Heat Shock Protein gp96 Blood, 2004, 104, 2451-2451.	1.4	0
191	Tumor Antigen Immunization of Sibling Stem Cell Transplant Donors in Multiple Myeloma Blood, 2004, 104, 3340-3340.	1.4	0
192	Metaphase Cytogenetic Abnormalities (M-CA) and Interphase FISH for Deletion 13 (FISH 13) in Total Therapy 2 (TT 2): Follow up Observation among? 380 Patients with Newly Diagnosed Multiple Myeloma (MM) Blood, 2004, 104, 4935-4935.	1.4	0
193	NY-ESO-1 Specific Antibodies Are Frequently Detected in Hight-Risk Myeloma Blood, 2004, 104, 2464-2464.	1.4	0
194	Myeloma Cell-Derived Factors Retard the Differentiation and Function of Dendritic Cells Blood, 2004, 104, 2447-2447.	1.4	0
195	Gene Expression Profiling (GEP) in Multiple Myeloma (MM): Comparison of Purified MM Cells (PMM), Random Bone Marrow Biopsies (RBX) and Fine Needle Biopsies from Focal Lesions (FNBX) Blood, 2005, 106, 1535-1535.	1.4	0
196	Serum Concentrations of Vitamin B-12 and Alkaline Phosphatase in Newly Diagnosed Multiple Myeloma Patients Blood, 2005, 106, 5110-5110.	1.4	0
197	The Ellipticine Derivative NSC 338258 Has Anti-Myeloma Activity Blood, 2005, 106, 3379-3379.	1.4	0
198	Incidence, Outcomes, and SNP Genotypes Show Different Ethnic Association in Patients with Myeloma, Assessed in SWOG and ECOG Clinical Trials S9321 and E9486: From the Bank on a Cure Blood, 2005, 106, 506-506.	1.4	0

#	Article	IF	CITATIONS
199	Total Therapy 2 (No Thalidomide Arm, TT2-) Is Superior to Total Therapy 1 (TT1) for Newly Diagnosed Multiple Myeloma (MM): Doubling 4-Yr Survival among Patients with Cytogenetic Abnormalities (CA) Due to Consolidation Chemotherapy (CCT) and DEX Maintenance Blood, 2005, 106, 1152-1152.	1.4	0
200	Total Therapy 1 (TT1): Status Report of the First Tandem Autotransplant (TAT) Trial for Multiple Myeloma (MM) - 15 Years Later Blood, 2005, 106, 1151-1151.	1.4	0
201	Beta-Catenin and N-Cadherin in Myeloma: Implications for Adhesion and Migration Blood, 2005, 106, 2497-2497.	1.4	0
202	Acquired Resistance to Activated Protein C (aAPCR) Is Associated with Increased Risk of Deep Vein Thrombosis in Multiple Myeloma Blood, 2005, 106, 3484-3484.	1.4	0
203	Differential Antigenic Targets of Anti-Tumor Immune Response and Selective Immunity to Stem Cell Associated Group B SOX Proteins in Preneoplastic Versus Malignant Gammopathy Blood, 2005, 106, 5116-5116.	1.4	0
204	Superior 12-yr Survival (66% vs 30%) with 5-yr Continuous (Rc) vs "Discontinuous―Remission (Rd): Results of Total Therapies 1 & 2 (TT1,2) for Multiple Myeloma (MM) Blood, 2005, 106, 1153-1153.	1.4	0
205	AMD3100 Plus C-CSF Mobilizes the Majority of Non-Hodgkin's Lymphoma (NHL), Multiple Myeloma (MM), and Hodgkin's Disease (HD) Patients Who Failed Prior Mobilization with Other Regimens Blood, 2006, 108, 5218-5218.	1.4	0
206	DNA Repair Genes Are Upregulated in Multiple Myeloma (MM) Patients Relapsing after Tandem Transplantation Blood, 2006, 108, 3392-3392.	1.4	0
207	SNP Associations with Event Free Survival in Myeloma from Two Phase III Clinical Trials Using the Bank On A Cure Chip Blood, 2006, 108, 131-131.	1.4	0
208	Immune Reconstruction Inflammatory Syndrome (IRIS) with Invasive Aspergillosis (IA) in Patients (pts) with Hematological Cancer (Hem-Ca): Clinical and Research Implications Blood, 2006, 108, 5313-5313.	1.4	0
209	JNK Regulates DKK1 Expression in Multiple Myeloma Cells Blood, 2006, 108, 3411-3411.	1.4	0
210	Predicting Response to Therapy for Graft-vs-Host Disease (GvHD) with a Rapid Immune Function Assay Blood, 2007, 110, 5012-5012.	1.4	0
211	Analytical Approaches for the BOAC SNP Panel Association with Progression Free Survival in Myeloma. Blood, 2008, 112, 2715-2715.	1.4	0
212	Bone Morphogenic Protein 6: A Prognostic Factor Expressed by Normal Plasma Cells and Multiple Myeloma Cells Inhibiting Their Proliferation and Angiogenesis Induction. Blood, 2008, 112, 2701-2701.	1.4	0
213	Proteomic Profiling of Multiple Myeloma: Correlation of Protein and Gene Expression Data Blood, 2008, 112, 1705-1705.	1.4	0
214	Bortezomib Induces Osteoblast Differentiation Via Wnt-Independent Activation of Beta-catenin/TCF Signaling. Blood, 2008, 112, 846-846.	1.4	0
215	Expression of Myeloma-Specific Markers in Bone Marrow Spicules Using a Novel Immunohistochemical Technique. Blood, 2008, 112, 5152-5152.	1.4	0
216	High-Risk Multiple Myeloma Is Characterized by Uniform Over-Expression of Mirnas and Increased Copy Number and Expression of Argonaute 2, A Master Regulator of Mirna Maturation and B-Cell Development Blood, 2009, 114, 1804-1804.	1.4	0

#	Article	IF	CITATIONS
217	Pacmed Salvage Therapy for Advanced High-Risk Multiple Myeloma (AHRMM). Blood, 2010, 116, 1969-1969.	1.4	0
218	Total Therapy 2 (TT2) for Multiple Myeloma (MM): Contributions to Survival Outcomes of Dosing of Thalidomide (T), Dexamethasone (D) and Interferon (I) Maintenance Components Blood, 2010, 116, 1356-1356.	1.4	0
219	Aldehyde Dehydrogenase (ALDH) Vs CD34 for Predicting Engraftment After Autologous Hematopoietic Progenitor Cell (autoHPC) Transplant. Blood, 2010, 116, 4441-4441.	1.4	0
220	Deregulated Cellular Iron Metabolism Factors Mediate Iron Overload in Myeloma Cells and Osteoclasts, and Promote Myeloma Growth and Bone Disease,. Blood, 2011, 118, 3941-3941.	1.4	0
221	Myeloma Can Modulate Expanded Natural Killer Cell Function Through Multiple Mechanisms. Blood, 2012, 120, 4020-4020.	1.4	0
222	The Antimalarial Agent Artesunate Overcomes Bortezomib Resistance in Myeloma Cell Lines Through Non-Caspase Mediated Apoptosis. Blood, 2012, 120, 4015-4015.	1.4	0
223	Gene Expression Profiling (GEP) in MGUS and AMM: Predictors of Progression Blood, 2012, 120, 2933-2933.	1.4	Ο
224	Identifying the Outliers Among Gene Expression Profiling (GEP)-Defined Low-Risk Myeloma Patients Treated with Total Therapy 2 and 3 (TT2, TT3). Blood, 2012, 120, 195-195.	1.4	0
225	FISH and GEP Based Prediction of Chromosomal Translocation Identifies Myeloma Patients Who Do Not Benefit From Bortezomib. Blood, 2012, 120, 1814-1814.	1.4	Ο
226	Renal Function Impairment (creatinine>=2mg/dL) Limits Progress Noted with the Transition From Total Therapies TT1 to TT2 to TT3 Across Age Groups. Blood, 2012, 120, 1962-1962.	1.4	0
227	Hematopoietic Progenitor Cell (HPC) Collection Is Feasible in Previously Transplanted Multiple Myeloma Patients and Plerixafor Improves Collection. Blood, 2012, 120, 4127-4127.	1.4	0
228	Role Of Cytogenetic Abnormalities At Baseline and During 5-Year Follow-Up In Multiple Myeloma Patients Treated On The Total Therapy 3 Protocol. Blood, 2013, 122, 3137-3137.	1.4	0
229	Impact Of Elotuzumab Therapy On Circulating and Ex Vivo Activated/Expanded Autologous Natural Killer (Auto-ENK) Cell Activity. Blood, 2013, 122, 5389-5389.	1.4	Ο
230	Healthy Donor Whole Bone Marrow Cells Preconditioned With Myeloma Patient Serum Support Long-Term Survival Of Primary Myeloma and Reveal Altered Microenvironmental Pathways. Blood, 2013, 122, 3118-3118.	1.4	0
231	Inhibition Of BTK Activity In Myeloma Cells Within a Supportive Microenvironment Promotes Their Growth But Suppresses Metastasis. Blood, 2013, 122, 4432-4432.	1.4	0
232	Sustained Growth of Primary Myeloma Cells in Coculture with Whole Donor Bone Marrow Is Associated with Induced Secretion of the Microenvironmental Mediator of Cytokinesis, Hemicentin-1. Blood, 2014, 124, 3403-3403.	1.4	0
233	Studies of the Proteasome Inhibitor Sensitivity Modulator Tight Junction Protein 1 Highlight a Role for Signaling through the Epidermal Growth Factor Receptor in Determining Proteasome Capacity. Blood, 2014, 124, 3414-3414.	1.4	0
234	Flow Cytometry Defined Cytoplasmic Immunoglobulin Index Is a Major Prognostic Factor for Progression of Asymptomatic Monoclonal Gammopathies to Clinical Multiple Myeloma. Blood, 2014, 124, 2079-2079.	1.4	0

#	Article	IF	CITATIONS
235	Identifying a Gene Expression (GEP)-Based Model Predicting for Progression from AMM to Cmm Requiring Therapy in S0120 Patients Treated at Mirt. Blood, 2014, 124, 2078-2078.	1.4	0
236	Low BCL11A Expression in the Myeloma Microenvironment at Diagnosis Is Associated with Early Development of MDS Cytogenetic Abnormalities and Poor Overall Survival. Blood, 2014, 124, 2012-2012.	1.4	0
237	PET-CT Defined Focal Lesions at Baseline and Day 7 Predict Outcome in GEP 70 Defined High Risk Multiple Myeloma Patients. Blood, 2014, 124, 3407-3407.	1.4	0
238	Low-Dose 28-Day Metronomically Scheduled Therapy (METRO) for Newly Diagnosed High-Risk Multiple Myeloma: A Pilot Study. Blood, 2014, 124, 5770-5770.	1.4	0
239	Exomic microRNA Profiling of Bone Marrow Aspirate Plasma and Comparison with mRNA Profiles Used in the Clinical Management of Multiple Myeloma. Blood, 2014, 124, 5681-5681.	1.4	0
240	Defining Risk of MGUS and AMM Progression to Myeloma By Ig Heavy-Chain FISH. Blood, 2014, 124, 3408-3408.	1.4	0
241	Outcomes of Autologous Transplantation for Treatment-Related AML and MDS in Previously Treated Multiple Myeloma Patients (pts). Blood, 2015, 126, 1997-1997.	1.4	0
242	Assessment of Total Lesion Glycolysis and Metabolic Tumor Volume Improve the Clinical Value of Focal Lesion Assessment By FDG PET/CT in Myeloma. Blood, 2015, 126, 724-724.	1.4	0
243	Deletion of TP53 (17p13) Is Associated with Poor Outcome for Newly Diagnosed High-Risk Multiple Myeloma. Blood, 2015, 126, 2982-2982.	1.4	0
244	Molecular Subtyping and Risk Stratification for the Classification of Myeloma. Blood, 2015, 126, 4173-4173.	1.4	0
245	Differential ICAM3 Gene Expression Correlates with Susceptibility to Natural Killer Cell-Mediated Lysis in Multiple Myeloma. Blood, 2015, 126, 2990-2990.	1.4	0
246	Extending Metronomic Therapy to 28 Days (metro28) for Relapsed Refractory Multiple Myeloma (RRMM). Blood, 2015, 126, 5395-5395.	1.4	0
247	Identification and Validation of IMiD-14 Model Predictive of IMiD Resistance in Multiple Myeloma. Blood, 2015, 126, 4183-4183.	1.4	0
248	Re-Mineralization of Large Pelvic Lytic Lesions By CT Imaging in Patients with Multiple Myeloma: The Arkansas Experience. Blood, 2015, 126, 4193-4193.	1.4	0
249	47 Genes Define Myeloma Cell Acquired Resistance to Bortezomib and Have Profound Prognostic Implications in Multiple Myeloma. Blood, 2015, 126, 499-499.	1.4	0
250	Next Generation Sequencing (NGS) Based Minimal Residual Disease (MRD) Testing Is Highly Predictive of Overall and Progression Free Survival in the Total Therapy Trials and Shows Different Prognostic Implications in High Vs Standard Risk Multiple Myeloma. Blood, 2016, 128, 2064-2064.	1.4	0
251	Aberrant a-to-I RNA Editing and Prognostic Impact of Adar in Multiple Myeloma Patients with 1q Amplification. Blood, 2016, 128, 357-357.	1.4	0
252	Mutation Burden in Multiple Myeloma Is Captured By Gene Expression Profiles. Blood, 2016, 128, 4450-4450.	1.4	0

#	Article	IF	CITATIONS
253	Lack of a Spleen Signal on Diffusion Weighted MRI Is Associated with High Tumor Burden and Poor Prognosis in Multiple Myeloma. Blood, 2018, 132, 4471-4471.	1.4	0
254	N-Cadherin Stabilizes β-Catenin and Promotes β-Catenin/TCF Transcriptional Activation and Cell Adhesion-Mediated Drug Resistance in Multiple Myeloma. Blood, 2021, 138, 1572-1572.	1.4	0
255	28-Day Metronomic Therapy for Relapsed Refractory Multiple Myeloma. Blood, 2020, 136, 13-13.	1.4	0