Liguang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5340534/publications.pdf Version: 2024-02-01

LICHANC WANC

#	Article	IF	CITATIONS
1	Effects of surface forces and film elasticity on foam stability. International Journal of Mineral Processing, 2008, 85, 101-110.	2.6	99
2	Hydrophobic Forces in the Foam Films Stabilized by Sodium Dodecyl Sulfate:Â Effect of Electrolyte. Langmuir, 2004, 20, 11457-11464.	3.5	78
3	Flotation of marine microalgae: Effect of algal hydrophobicity. Bioresource Technology, 2012, 121, 471-474.	9.6	73
4	Hydrophobized particles can accelerate nucleation of clathrate hydrates. Fuel, 2015, 140, 440-445.	6.4	60
5	Effects of ionic surfactants on methane hydrate formation kinetics in a static system. Advanced Powder Technology, 2014, 25, 1227-1233.	4.1	56
6	Role of hydrophobic force in the thinning of foam films containing a nonionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 84-91.	4.7	53
7	Dissolution of starch and its role in the flotation separation of quartz from hematite. Powder Technology, 2017, 320, 346-357.	4.2	53
8	Effective harvesting of low surface-hydrophobicity microalgae by froth flotation. Bioresource Technology, 2014, 159, 437-441.	9.6	52
9	Heterocoagulation of alumina and quartz studied by zeta potential distribution and particle size distribution measurements. Powder Technology, 2017, 309, 1-12.	4.2	44
10	Raman Spectroscopic Studies of Clathrate Hydrate Formation in the Presence of Hydrophobized Particles. Journal of Physical Chemistry A, 2016, 120, 417-424.	2.5	40
11	Hydrophobic forces in thin aqueous films and their role in film thinning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 263, 267-274.	4.7	39
12	Phase Equilibria and Dissociation Enthalpies of Hydrogen Semi-Clathrate Hydrate with Tetrabutyl Ammonium Nitrate. Journal of Chemical & Engineering Data, 2012, 57, 603-609.	1.9	39
13	Stability of foams and froths in the presence of ionic and non-ionic surfactants. Minerals Engineering, 2006, 19, 539-547.	4.3	37
14	Structural and functional insights into starches as depressant for hematite flotation. Minerals Engineering, 2018, 124, 149-157.	4.3	36
15	Anomalous thickness variation of the foam films stabilized by weak non-ionic surfactants. Journal of Colloid and Interface Science, 2009, 337, 538-547.	9.4	34
16	Improving the performance of coal flotation using oscillatory air supply. Fuel Processing Technology, 2017, 165, 131-137.	7.2	33
17	Measurement of froth zone and collection zone recoveries with various starch depressants in anionic flotation of hematite and quartz. Minerals Engineering, 2019, 138, 31-42.	4.3	32
18	Collecting Agent–Mineral Interactions in the Reverse Flotation of Iron Ore: A Brief Review. Minerals (Basel, Switzerland), 2020, 10, 681.	2.0	30

LIGUANG WANG

#	Article	IF	CITATIONS
19	Atomic Force Microscopy Study of Forces between a Silica Sphere and an Oxidized Silicon Wafer in Aqueous Solutions of NaCl, KCl, and CsCl at Concentrations up to Saturation. Journal of Physical Chemistry C, 2013, 117, 2113-2120.	3.1	29
20	Flotation separation of marine microalgae from aqueous medium. Separation and Purification Technology, 2015, 156, 636-641.	7.9	28
21	Cooperative effect of surfactant addition and gas-inducing agitation on methane hydrate formation rate. Fuel, 2018, 230, 134-137.	6.4	28
22	Equilibrium Conditions for Semiclathrate Hydrates Formed with CO ₂ , N ₂ , or CH ₄ in the Presence of Tri- <i>n</i> -butylphosphine Oxide. Industrial & Engineering Chemistry Research, 2014, 53, 1234-1241.	3.7	27
23	Phase Equilibria and Methane Enrichment of Clathrate Hydrates of Mine Ventilation Air + Tetrabutylphosphonium Bromide. Industrial & Engineering Chemistry Research, 2014, 53, 8182-8187.	3.7	25
24	Surface dissolution of spodumene and its role in the flotation concentration of a spodumene ore. Minerals Engineering, 2018, 125, 120-125.	4.3	25
25	Effect of pH and NaCl Concentration on the Stability of Surfactant-Free Foam Films. Langmuir, 2009, 25, 294-297.	3.5	24
26	Correlation of air recovery with froth stability and separation efficiency in coal flotation. Minerals Engineering, 2013, 41, 25-30.	4.3	22
27	Improving column flotation of oxidized or ultrafine coal particles by changing the flow pattern of air supply. Minerals Engineering, 2018, 124, 98-102.	4.3	20
28	The effects of acid hydrolysis on protein biosurfactant molecular, interfacial, and foam properties: pH responsive protein hydrolysates. Soft Matter, 2012, 8, 5131.	2.7	19
29	Impact of interface approach velocity on bubble coalescence. Minerals Engineering, 2012, 26, 50-56.	4.3	19
30	Coal beneficiation technology to reduce hazardous heavy metals in fly ash. Journal of Hazardous Materials, 2021, 416, 125853.	12.4	19
31	Drainage and rupture of thin foam films in the presence of ionic and non-ionic surfactants. International Journal of Mineral Processing, 2012, 102-103, 58-68.	2.6	18
32	Effect of Carbon Chain Length of Organic Salts on the Thermodynamic Stability of Methane Hydrate. Journal of Chemical & Engineering Data, 2016, 61, 1952-1960.	1.9	17
33	Semiclathrate hydrates of methane + tetraalkylammonium hydroxides. Fuel, 2017, 203, 618-626.	6.4	17
34	Improved froth zone and collection zone recoveries of fine mineral particles in a flotation column with oscillatory air supply. Separation and Purification Technology, 2018, 193, 311-316.	7.9	16
35	A comparative study of methyl cyclohexanemethanol and methyl isobutyl carbinol as frother for coal flotation. International Journal of Mineral Processing, 2016, 155, 32-44.	2.6	15
36	Experimental studies and modeling of surface bubble behaviour in froth flotation. Chemical Engineering Research and Design, 2015, 101, 98-106.	5.6	14

LIGUANG WANG

#	Article	IF	CITATIONS
37	Thermodynamic stability conditions, methane enrichment, and gas uptake of ionic clathrate hydrates of mine ventilation air. Chemical Engineering Journal, 2015, 273, 75-81.	12.7	14
38	Improvement of flotation recovery using oscillatory air supply. Minerals Engineering, 2019, 131, 321-324.	4.3	13
39	Modelling solid-liquid separation and particle size classification in decanter centrifuges. Separation and Purification Technology, 2021, 263, 118408.	7.9	13
40	A Response to the Comment on "Hydrophobic Forces in the Foam Films Stabilized by Sodium Dodecyl Sulfate:  Effect of Electrolyte― Langmuir, 2008, 24, 5194-5196.	3.5	12
41	Determination of the concentration of MIBC in coking coal flotation. Minerals Engineering, 2018, 127, 74-80.	4.3	12
42	Modeling of bubble coalescence in saline water in the presence of flotation frothers. International Journal of Mineral Processing, 2015, 134, 41-49.	2.6	11
43	Use of oscillatory air supply for improving the throughput and carrying capacity of column flotation. Powder Technology, 2019, 353, 41-47.	4.2	10
44	Phase equilibrium measurements for clathrate hydrates of flue gas (CO2+N2+O2) in the presence of tetra-n-butyl ammonium bromide or tri-n-butylphosphine oxide. Journal of Chemical Thermodynamics, 2015, 88, 96-100.	2.0	9
45	Effect of polyaluminum chloride on coal flotation performance with different reagent addition regimes. Powder Technology, 2019, 349, 84-91.	4.2	7
46	Dynamic Stabilization of Foam Films with Acoustic Sound. Langmuir, 2020, 36, 2966-2973.	3.5	7
47	The potential of acoustic sound to improve flotation kinetics. Minerals Engineering, 2020, 154, 106413.	4.3	6
48	A sustainable and green process based on froth flotation for effective recovery of combustibles from coking coal fines. International Journal of Coal Preparation and Utilization, 2022, 42, 2056-2063.	2.1	4
49	Improvement of coal flotation by exposure of the froth to acoustic sound. Minerals Engineering, 2021, 168, 106920.	4.3	4
50	Flotation separation of limonite from quartz with sodium oleate: effects of limonite dissolution and addition of sodium hexametaphosphate. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, 2021, 130, 202-208.	0.2	3
51	Bubble Size in a Flotation Column with Oscillatory Air Supply in the Presence of Frothers. Mineral Processing and Extractive Metallurgy Review, 2022, 43, 926-934.	5.0	3
52	Quantitative frother analysis on coal mine process water with a benchtop NMR spectrometer. Journal of Magnetic Resonance, 2021, 331, 107054.	2.1	3
53	A Convolutional Neural Network for Classification of Froth Mobility in an Industrial Flotation Cell. Mineral Processing and Extractive Metallurgy Review, 2023, 44, 209-217.	5.0	3
54	Flotation separation of limonite from calcite with sodium oleate: effects of calcite dissolution and addition of sodium pyrophosphate. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, 2019, 128, 207-212.	0.2	2

LIGUANG WANG

#	Article	IF	CITATIONS
55	Classification of gas dispersion states via deep learning based on images obtained from a bubble sampler. Chemical Engineering Journal Advances, 2021, 5, 100064.	5.2	2
56	Industrial demonstration of a sensor for monitoring coal flotation. Minerals Engineering, 2021, 167, 106884.	4.3	2
57	Effects of Film Elasticity and Surface Forces on the Stability of Foams and Lamellae Films in the Presence of Non-ionic Surfactants. AIP Conference Proceedings, 2008, , .	0.4	1
58	Modeling the breakage stage in spheronization of cylindrical paste extrudates. AICHE Journal, 2021, 67, e17247.	3.6	1
59	Measurement of solids concentration in aqueous slurries for monitoring the solids recovery in solid bowl centrifugation. Minerals Engineering, 2021, 170, 107068.	4.3	1
60	Mechanical Flotation of Mineral Particles with an Underwater Speaker. Mineral Processing and Extractive Metallurgy Review, 2023, 44, 325-329.	5.0	1
61	Frother concentration measurement with a benchtop NMR spectrometer. Minerals Engineering, 2022, 180, 107512.	4.3	1
62	Frother distribution in an industrial coal flotation circuit. International Journal of Coal Preparation and Utilization, 0, , 1-14.	2.1	0
63	Improvement of dynamic foam stability with low-frequency acoustic sound. Minerals Engineering, 2022, 184, 107654.	4.3	Ο