Guohua G Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5340463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles. International Journal of Mass Spectrometry, 2011, 303, 118-124.	0.7	236
2	Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China. Atmospheric Environment, 2011, 45, 3447-3453.	1.9	150
3	Characteristics of PM _{2.5} mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network. Atmospheric Chemistry and Physics, 2018, 18, 8849-8871.	1.9	144
4	Emission of PAHs, NPAHs and OPAHs from residential honeycomb coal briquette combustion. Energy & Fuels, 2014, 28, 636-642.	2.5	109
5	A review of experimental techniques for aerosol hygroscopicity studies. Atmospheric Chemistry and Physics, 2019, 19, 12631-12686.	1.9	80
6	Enhanced trimethylamine-containing particles during fog events detected by single particle aerosol mass spectrometry in urban Guangzhou, China. Atmospheric Environment, 2012, 55, 121-126.	1.9	74
7	Mixing state of individual submicron carbon-containing particles during spring and fall seasons in urban Guangzhou, China: a case study. Atmospheric Chemistry and Physics, 2013, 13, 4723-4735.	1.9	73
8	A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols. Atmospheric Chemistry and Physics, 2019, 19, 2115-2133.	1.9	58
9	Source and mixing state of iron-containing particles in Shanghai by individual particle analysis. Chemosphere, 2014, 95, 9-16.	4.2	49
10	Variation of secondary coatings associated with elemental carbon by single particle analysis. Atmospheric Environment, 2014, 92, 162-170.	1.9	48
11	Characteristics of individual particles in the atmosphere of Guangzhou by single particle mass spectrometry. Atmospheric Research, 2015, 153, 286-295.	1.8	48
12	In situ chemical composition measurement of individual cloud residue particles at aÂmountain site, southern China. Atmospheric Chemistry and Physics, 2017, 17, 8473-8488.	1.9	42
13	Insight into the in-cloud formation of oxalate based on in situ measurement by single particle mass spectrometry. Atmospheric Chemistry and Physics, 2017, 17, 13891-13901.	1.9	41
14	Chemical composition, diurnal variation and sources of PM2.5 at two industrial sites of South China. Atmospheric Pollution Research, 2013, 4, 298-305.	1.8	40
15	Size-segregated chemical characteristics of aerosol during haze in an urban area of the Pearl River Delta region, China. Urban Climate, 2013, 4, 74-84.	2.4	39
16	Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China. Atmospheric Environment, 2017, 171, 279-288.	1.9	39
17	Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using aÂcommercial vapor sorption analyzer. Atmospheric Measurement Techniques, 2017, 10, 3821-3832.	1.2	39
18	Gas-to-particle partitioning of atmospheric amines observed at a mountain site in southern China. Atmospheric Environment, 2018, 195, 1-11.	1.9	38

Guohua G Zhang

#	Article	IF	CITATIONS
19	Oxalate Formation Enhanced by Fe-Containing Particles and Environmental Implications. Environmental Science & Technology, 2019, 53, 1269-1277.	4.6	36
20	The single-particle mixing state and cloud scavenging of black carbon: a case study at a high-altitude mountain site in southern China. Atmospheric Chemistry and Physics, 2017, 17, 14975-14985.	1.9	31
21	Characteristics and Formation Mechanisms of Sulfate and Nitrate in Size-segregated Atmospheric Particles from Urban Guangzhou, China. Aerosol and Air Quality Research, 2019, 19, 1284-1293.	0.9	29
22	High secondary formation of nitrogen-containing organics (NOCs) and its possible link to oxidized organics and ammonium. Atmospheric Chemistry and Physics, 2020, 20, 1469-1481.	1.9	28
23	Evidence for the Formation of Imidazole from Carbonyls and Reduced Nitrogen Species at the Individual Particle Level in the Ambient Atmosphere. Environmental Science and Technology Letters, 2021, 8, 9-15.	3.9	27
24	On mineral dust aerosol hygroscopicity. Atmospheric Chemistry and Physics, 2020, 20, 13611-13626.	1.9	27
25	Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: Geographical Variations, Compositional Dependence, and Atmospheric Implications. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10844-10857.	1.2	26
26	Realâ€Time Characterization of Aerosol Compositions, Sources, and Aging Processes in Guangzhou During PRIDEâ€GBA 2018 Campaign. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035114.	1.2	25
27	In situ detection of the chemistry of individual fog droplet residues in the Pearl River Delta region, China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9105-9116.	1.2	24
28	An Improved Absorption Ãngström Exponent (AAE)-Based Method for Evaluating the Contribution of Light Absorption from Brown Carbon with a High-Time Resolution. Aerosol and Air Quality Research, 2019, 19, 15-24.	0.9	24
29	Real-time and single-particle volatility of elemental carbon-containing particles in the urban area of Pearl River Delta region, China. Atmospheric Environment, 2015, 118, 194-202.	1.9	23
30	Measurement report: Emissions of intermediate-volatility organic compounds from vehicles under real-world driving conditions in an urban tunnel. Atmospheric Chemistry and Physics, 2021, 21, 10005-10013.	1.9	23
31	Impacts of methanesulfonate on the cloud condensation nucleation activity of sea salt aerosol. Atmospheric Environment, 2019, 201, 13-17.	1.9	18
32	Abundance and Fractional Solubility of Aerosol Iron During Winter at a Coastal City in Northern China: Similarities and Contrasts Between Fine and Coarse Particles. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	18
33	In-cloud formation of secondary species in iron-containing particles. Atmospheric Chemistry and Physics, 2019, 19, 1195-1206.	1.9	17
34	Enhanced Wet Deposition of Waterâ€Soluble Organic Nitrogen During the Harvest Season: Influence of Biomass Burning and In loud Scavenging. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032699.	1.2	17
35	The real part of the refractive indices and effective densities for chemically segregated ambient aerosols in Guangzhou measured by a single-particle aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2016, 16, 2631-2640.	1.9	16
36	Recent Advances in Quantifying Wet Scavenging Efficiency of Black Carbon Aerosol. Atmosphere, 2019, 10, 175.	1.0	15

Guohua G Zhang

#	Article	IF	CITATIONS
37	Seasonal variation of amine-containing particles in urban Guangzhou, China. Atmospheric Environment, 2020, 222, 117102.	1.9	15
38	A review of measurement techniques for aerosol effective density. Science of the Total Environment, 2021, 778, 146248.	3.9	15
39	Black Carbon Involved Photochemistry Enhances the Formation of Sulfate in the Ambient Atmosphere: Evidence From In Situ Individual Particle Investigation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035226.	1.2	15
40	Tropospheric aerosol hygroscopicity in China. Atmospheric Chemistry and Physics, 2020, 20, 13877-13903.	1.9	14
41	Impact of in-cloud aqueous processes on the chemical compositions and morphology of individual atmospheric aerosols. Atmospheric Chemistry and Physics, 2020, 20, 14063-14075.	1.9	11
42	Measurement report: Molecular characteristics of cloud water in southern China and insights into aqueous-phase processes from Fourier transform ion cyclotron resonance mass spectrometry. Atmospheric Chemistry and Physics, 2021, 21, 16631-16644.	1.9	11
43	Atmospheric Processing of Particulate Imidazole Compounds Driven by Photochemistry. Environmental Science and Technology Letters, 2022, 9, 265-271.	3.9	11
44	Different characteristics of individual particles from light-duty diesel vehicle at the launching and idling state by AAC-SPAMS. Journal of Hazardous Materials, 2021, 418, 126304.	6.5	10
45	Individual particle investigation on the chloride depletion of inland transported sea spray aerosols during East Asian summer monsoon. Science of the Total Environment, 2021, 765, 144290.	3.9	9
46	Does atmospheric processing produce toxic Pb-containing compounds? A case study in suburban Beijing by single particle mass spectrometry. Journal of Hazardous Materials, 2020, 382, 121014.	6.5	8
47	Filter-based absorption enhancement measurement for internally mixed black carbon particles over southern China. Science of the Total Environment, 2021, 762, 144194.	3.9	8
48	Measurement of aerosol effective density by single particle mass spectrometry. Science China Earth Sciences, 2016, 59, 320-327.	2.3	7
49	Enrichment of submicron sea-salt-containing particles in small cloud droplets based on single-particle mass spectrometry. Atmospheric Chemistry and Physics, 2019, 19, 10469-10479.	1.9	7
50	The reductions of oxalate and its precursors in cloud droplets relative to wet particles. Atmospheric Environment, 2020, 235, 117632.	1.9	7
51	Technical note: Measurement of chemically resolved volume equivalent diameter and effective density of particles by AAC-SPAMS. Atmospheric Chemistry and Physics, 2021, 21, 5605-5613.	1.9	7
52	Stage-resolved in-cloud scavenging of submicron and BC-containing particles: A case study. Atmospheric Environment, 2021, 244, 117883.	1.9	6
53	The optical properties and in-situ observational evidence for the formation of brown carbon in clouds. Atmospheric Chemistry and Physics, 2022, 22, 4827-4839.	1.9	5
54	Influence of meteorological parameters and oxidizing capacity on characteristics of airborne particulate amines in an urban area of the Pearl River Delta, China. Environmental Research, 2022, 212, 113212.	3.7	3

#	Article	IF	CITATIONS
55	Seasonal variations of imidazoles in urban areas of Beijing and Guangzhou, China by single particle mass spectrometry. Science of the Total Environment, 2022, 844, 156995.	3.9	2