
Stefanie Hessel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5340425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic Cation Transporter I and Na ⁺ /taurocholate Coâ€Transporting Polypeptide are Involved in Retrorsine―and Senecionineâ€Induced Hepatotoxicity in HepaRG cells. Molecular Nutrition and Food Research, 2022, 66, e2100800.	3.3	4
2	Identification of microRNAs Implicated in Modulating Senecionine-Induced Liver Toxicity in HepaRG Cells. Foods, 2022, 11, 532.	4.3	2
3	The chemical structure impairs the intensity of genotoxic effects promoted by 1,2-unsaturated pyrrolizidine alkaloids in vitro. Food and Chemical Toxicology, 2022, 164, 113049.	3.6	5
4	Mixture effects of food-relevant polycyclic aromatic hydrocarbons on the activation of nuclear receptors and gene expression, benzo[a]pyrene metabolite profile and DNA damage in HepaRG cells. Food and Chemical Toxicology, 2021, 147, 111884.	3.6	11
5	Pyrrolizidine Alkaloids Disturb Bile Acid Homeostasis in the Human Hepatoma Cell Line HepaRG. Foods, 2021, 10, 161.	4.3	6
6	Active Transport of Hepatotoxic Pyrrolizidine Alkaloids in HepaRG Cells. International Journal of Molecular Sciences, 2021, 22, 3821.	4.1	8
7	The Food Contaminants Pyrrolizidine Alkaloids Disturb Bile Acid Homeostasis Structure-Dependently in the Human Hepatoma Cell Line HepaRG. Foods, 2021, 10, 1114.	4.3	4
8	Pyrrolizidine alkaloid-induced transcriptomic changes in rat lungs in a 28-day subacute feeding study. Archives of Toxicology, 2021, 95, 2785-2796.	4.2	5
9	Pyrrolizidine Alkaloids Induce Cell Death in Human HepaRG Cells in a Structure-Dependent Manner. International Journal of Molecular Sciences, 2021, 22, 202.	4.1	15
10	Polycyclic Aromatic Hydrocarbons Activate the Aryl Hydrocarbon Receptor and the Constitutive Androstane Receptor to Regulate Xenobiotic Metabolism in Human Liver Cells. International Journal of Molecular Sciences, 2021, 22, 372.	4.1	26
11	The pyrrolizidine alkaloid senecionine induces CYP-dependent destruction of sinusoidal endothelial cells and cholestasis in mice. Archives of Toxicology, 2020, 94, 219-229.	4.2	33
12	Hepatotoxic pyrrolizidine alkaloids induce DNA damage response in rat liver in a 28-day feeding study. Archives of Toxicology, 2020, 94, 1739-1751.	4.2	25
13	Comparison of long-term versus short-term effects of okadaic acid on the apoptotic status of human HepaRG cells. Chemico-Biological Interactions, 2020, 317, 108937.	4.0	9
14	Okadaic acid activates Wnt/β-catenin-signaling in human HepaRG cells. Archives of Toxicology, 2019, 93, 1927-1939.	4.2	10
15	Human CYP3A4-mediated toxification of the pyrrolizidine alkaloid lasiocarpine. Food and Chemical Toxicology, 2019, 130, 79-88.	3.6	35
16	Sensitization of Human Liver Cells Toward Fasâ€Mediated Apoptosis by the Metabolically Activated Pyrrolizidine Alkaloid Lasiocarpine. Molecular Nutrition and Food Research, 2019, 63, e1801206.	3.3	12
17	Metabolism of the lipophilic phycotoxin 13-Desmethylspirolide C using human and rat in vitro liver models. Toxicology Letters, 2019, 307, 17-25.	0.8	0
18	Combined effects of okadaic acid and pectenotoxin-2, 13-desmethylspirolide C or yessotoxin in human intestinal Caco-2†cells. Chemosphere, 2019, 228, 139-148.	8.2	12

STEFANIE HESSEL

#	Article	IF	CITATIONS
19	The marine biotoxin okadaic acid affects intestinal tight junction proteins in human intestinal cells. Toxicology in Vitro, 2019, 58, 150-160.	2.4	19
20	In vitro characterization of hepatic toxicity of Alternaria toxins. Mycotoxin Research, 2019, 35, 157-168.	2.3	16
21	Pyrrolizidine alkaloid-induced alterations of prostanoid synthesis in human endothelial cells. Chemico-Biological Interactions, 2019, 298, 104-111.	4.0	6
22	Structure-dependent induction of apoptosis by hepatotoxic pyrrolizidine alkaloids in the human hepatoma cell line HepaRG: Single versus repeated exposure. Food and Chemical Toxicology, 2018, 114, 215-226.	3.6	28
23	PXR: Structure-specific activation by hepatotoxic pyrrolizidine alkaloids. Chemico-Biological Interactions, 2018, 288, 38-48.	4.0	15
24	Metabolism of okadaic acid by NADPH-dependent enzymes present in human or rat liver S9 fractions results in different toxic effects. Toxicology in Vitro, 2017, 42, 161-170.	2.4	15
25	Metabolism of the Marine Phycotoxin PTX-2 and Its Effects on Hepatic Xenobiotic Metabolism: Activation of Nuclear Receptors and Modulation of the Phase I Cytochrome P450. Toxins, 2017, 9, 212.	3.4	8
26	Differences in metabolism of the marine biotoxin okadaic acid by human and rat cytochrome P450 monooxygenases. Archives of Toxicology, 2016, 90, 2025-2036.	4.2	18
27	Disturbance of gene expression in primary human hepatocytes by hepatotoxic pyrrolizidine alkaloids: A whole genome transcriptome analysis. Toxicology in Vitro, 2015, 29, 1669-1682.	2.4	31
28	Utility of an appropriate reporter assay: Heliotrine interferes with GAL4/upstream activation sequence-driven reporter gene systems. Analytical Biochemistry, 2015, 487, 45-48.	2.4	10
29	Doseâ€dependent induction of signaling pathways by the flavonoid quercetin in human primary hepatocytes: A transcriptomic study. Molecular Nutrition and Food Research, 2015, 59, 1117-1129.	3.3	10
30	Structure–activity relationship in the passage of different pyrrolizidine alkaloids through the gastrointestinal barrier: ABCB1 excretes heliotrine and echimidine. Molecular Nutrition and Food Research, 2014, 58, 995-1004.	3.3	24
31	Active elimination of the marine biotoxin okadaic acid by P-glycoprotein through an in vitro gastrointestinal barrier. Toxicology Letters, 2014, 225, 311-317.	0.8	23
32	Polycyclic aromatic hydrocarbons stimulate human CYP3A4 promoter activity via PXR. Toxicology Letters, 2013, 222, 180-188.	0.8	79
33	Multidrug resistance-associated proteins are involved in the transport of the glutathione conjugates of the ultimate carcinogen of benzo[a]pyrene in human Caco-2 cells. Archives of Toxicology, 2013, 87, 269-280.	4.2	16
34	Analysis of GSH Conjugates of Bay- and Fjord-Region Dihydrodiol Epoxides of Benzo[a]pyrene and Dibenzo[a,l]pyrene and their Transport in Enterocyte-like Caco-2 Cells. Polycyclic Aromatic Compounds, 2012, 32, 221-237.	2.6	5
35	All-trans retinoic acid enhances the transport of phase II metabolites of benzo[a]pyrene by inducing the Breast Cancer Resistance Protein expression in Caco-2 cells. Toxicology Letters, 2010, 197, 151-155.	0.8	16