Maciej Krzywiecki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5339883/publications.pdf

Version: 2024-02-01

		516710	642732
59	792	16	23
papers	citations	h-index	23 g-index
59	59	59	1066
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Assessment of encrustation and physicochemical properties of poly(lactideâ€glycolide) <scp>â€</scp> Papaverine hydrochloride coating on ureteral <scp>doubleâ€J</scp> stents after longâ€term flow of artificial urine. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 367-381.	3.4	4
2	Thermal characterization of morphologically diverse copper phthalocyanine thin layers by scanning thermal microscopy. Ultramicroscopy, 2022, 233, 113435.	1.9	2
3	Singlet oxygen formation from photoexcited P3HT:PCBM films applied in oxidation reactions. Materials Advances, 2022, 3, 2063-2069.	5.4	4
4	C ₆₀ ThSe ₂ /ITO interface formation: photoemission – based charge transfer recognition for organic electronics application. Physical Chemistry Chemical Physics, 2022, , .	2.8	0
5	Doping of carbon nanotubes by halogenated solvents. Scientific Reports, 2022, 12, 7004.	3.3	9
6	Toward Effective CO ₂ Reduction in an Acid Medium: Electrocatalysis at Cu ₂ O-Derived Polycrystalline Cu Sites Immobilized within the Network of WO ₃ Nanowires. ACS Measurement Science Au, 2022, 2, 553-567.	4.4	1
7	Influence of catalyst zeta potential on the activation of persulfate. Chemical Communications, 2021, 57, 7814-7817.	4.1	13
8	Enhancing thermoelectric properties of single-walled carbon nanotubes using halide compounds at room temperature and above. Scientific Reports, 2021, 11, 8649.	3.3	35
9	Correlations of thermal properties with grain structure, morphology, and defect balance in nanoscale polycrystalline ZnO films. Applied Surface Science, 2021, 546, 149095.	6.1	11
10	Chemical and Electronic Structure Characterization of Electrochemically Deposited Nickel Tetraamino-phthalocyanine: A Step toward More Efficient Deposition Techniques for Organic Electronics Application. Journal of Physical Chemistry C, 2021, 125, 13542-13550.	3.1	5
11	Covalent Immobilization of Organic Photosensitizers on the Glass Surface: Toward the Formation of the Light-Activated Antimicrobial Nanocoating. Materials, 2021, 14, 3093.	2.9	6
12	Convenient but powerful method to dope single-walled carbon nanotube films with iodonium salts. Applied Nanoscience (Switzerland), 2020, 10, 529-539.	3.1	14
13	<p>Oxygen Functional Groups on MWCNT Surface as Critical Factor Boosting T2 Relaxation Rate of Water Protons: Towards Improved CNT-Based Contrast Agents</p> . International Journal of Nanomedicine, 2020, Volume 15, 7433-7450.	6.7	13
14	Enhancing near-infrared photoluminescence from single-walled carbon nanotubes by defect-engineering using benzoyl peroxide. Scientific Reports, 2020, 10, 19877.	3.3	5
15	Toward Efficient Toxic-Gas Detectors: Exploring Molecular Interactions of Sarin and Dimethyl Methylphosphonate with Metal-Centered Phthalocyanine Structures. Journal of Physical Chemistry C, 2020, 124, 6090-6102.	3.1	18
16	Low-Noble-Metal-Loading Hybrid Catalytic System for Oxygen Reduction Utilizing Reduced-Graphene-Oxide-Supported Platinum Aligned with Carbon-Nanotube-Supported Iridium. Catalysts, 2020, 10, 689.	3.5	9
17	Surface properties of SnO2 nanolayers prepared by spin-coating and thermal oxidation. Nanotechnology, 2020, 31, 315714.	2.6	9
18	Surface Properties of SnO2 Nanolayers Deposited by Rheotaxial Growth and Vacuum Oxidation for Potential Gas Sensor Applications. Proceedings (mdpi), 2019, 14, 25.	0.2	0

#	Article	IF	Citations
19	Electrochemically Polymerized Terthiopehene–C ₆₀ Dyads for the Photochemical Generation of Singlet Oxygen. Journal of Physical Chemistry C, 2019, 123, 25915-25924.	3.1	23
20	Carbohydrate Ionic Liquids and Salts as All-in-One Precursors for N-Doped Carbon. ACS Sustainable Chemistry and Engineering, 2019, 7, 19880-19888.	6.7	37
21	Interface and surface properties of oxide–organic hybrid nanostructures. Frontiers of Nanoscience, 2019, , 215-256.	0.6	2
22	Thermoelectric properties of composite films from multi-walled carbon nanotubes and ethyl cellulose doped with heteroatoms. Synthetic Metals, 2019, 257, 116190.	3.9	16
23	Carbon–Sulfur Bond Cleavage During Adsorption of Octadecane Thiol to Copper in Ethanol. Langmuir, 2019, 35, 6888-6897.	3.5	13
24	The Use of Lanthanum Ions and Chitosan for Boron Elimination from Aqueous Solutions. Polymers, 2019, 11, 718.	4.5	9
25	Ullmann Reactions of Carbon Nanotubes—Advantageous and Unexplored Functionalization toward Tunable Surface Chemistry. Nanomaterials, 2019, 9, 1619.	4.1	9
26	Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer. Beilstein Journal of Nanotechnology, 2018, 9, 936-944.	2.8	13
27	Chirality-sorted carbon nanotube films as high capacity electrode materials. RSC Advances, 2018, 8, 30600-30609.	3.6	9
28	Oxide–organic heterostructures: a case study of charge transfer disturbance at a SnO ₂ –copper phthalocyanine buried interface. Physical Chemistry Chemical Physics, 2018, 20, 16092-16101.	2.8	8
29	Sarin-simulant detection by phthalocyanine/palladium structures: From modeling to real sensor response. Sensors and Actuators B: Chemical, 2018, 273, 771-777.	7.8	9
30	Formation of poly(Azure A)-C60 photoactive layer as a novel approach in the heterogeneous photogeneration of singlet oxygen. Applied Surface Science, 2018, 457, 221-228.	6.1	12
31	Detection of intra-band gap defects states in spin-coated sol-gel SnO _{<i>x</i>} nanolayers by photoelectron spectroscopies. Journal Physics D: Applied Physics, 2018, 51, 315301.	2.8	25
32	Charge transfer quantification in a SnO _x /CuPc semiconductor heterostructure: investigation of buried interface energy structure by photoelectron spectroscopies. Physical Chemistry Chemical Physics, 2017, 19, 11816-11824.	2.8	13
33	Effect of order and disorder on degradation processes of copper phthalocyanine nanolayers. Synthetic Metals, 2017, 223, 199-204.	3.9	12
34	Impact of air exposure and annealing on the chemical and electronic properties of the surface of SnO ₂ nanolayers deposited by rheotaxial growth and vacuum oxidation. Beilstein Journal of Nanotechnology, 2017, 8, 514-521.	2.8	32
35	Study of Sensing Mechanisms in Nerve Agent Sensors Based on Phthalocyanine-palladium Structures. Procedia Engineering, 2016, 168, 586-589.	1.2	6
36	Theoretical analysis of acoustoelectrical sensitivity in SAW gas sensors with single and bi-layer structures. Sensors and Actuators B: Chemical, 2016, 236, 1069-1074.	7.8	18

#	Article	IF	CITATIONS
37	Towards monomaterial p-n junctions: Single-step fabrication of tin oxide films and their non-destructive characterisation by angle-dependent X-ray photoelectron spectroscopy. Applied Physics Letters, 2015, 107, 231601.	3.3	7
38	Ambience-related adsorbates on CuPc surfaceâ€"Photoemission and thermal desorption spectroscopy studies for control of organic electronics degradation processes. Synthetic Metals, 2015, 210, 141-147.	3.9	10
39	Self-assembled monolayers of partially fluorinated alcohols on Si(001): XPS and UV-photoemission study. Journal of Fluorine Chemistry, 2015, 180, 248-256.	1.7	8
40	Theoretical Analysis of Acoustoelectrical Sensitivity in SAW Gas Sensors. Procedia Engineering, 2015, 120, 1261-1264.	1.2	2
41	Zinc oxide as a defect-dominated material in thin films for photovoltaic applications – experimental determination of defect levels, quantification of composition, and construction of band diagram. Physical Chemistry Chemical Physics, 2015, 17, 10004-10013.	2.8	63
42	Experimental and computational evidence for hydrogen bonding interaction between $2\hat{a}\in^2$ -deoxyadenosine conjugate adduct and amino-terminated organic film on Si(001). Thin Solid Films, 2015, 588, 78-84.	1.8	2
43	Rheotaxial growth and vacuum oxidationâ€"Novel technique of tin oxide depositionâ€"In situ monitoring of oxidation process. Materials Letters, 2015, 154, 1-4.	2.6	15
44	Correlation between morphology and local thermal properties of iron (II) phthalocyanine thin layers. Journal Physics D: Applied Physics, 2014, 47, 335304.	2.8	14
45	Surface states and space charge layer electronic parameters specification for long term air-exposed copper phthalocyanine thin films. Thin Solid Films, 2014, 550, 361-366.	1.8	10
46	Electrochemical and photoelectronic studies on C60-pyrrolidine-functionalised poly(terthiophene). Electrochimica Acta, 2014, 141, 51-60.	5.2	13
47	Energy level alignment at the Si(111)/RCA–SiO2/copper(II) phthalocyanine ultra-thin film interface. Applied Surface Science, 2014, 311, 740-748.	6.1	17
48	Application of scanning microscopy to study correlation between thermal properties and morphology of BaTiO 3 thin films. Thin Solid Films, 2013, 545, 217-221.	1.8	21
49	Application of scanning thermal microscopy for investigation of thermal boundaries in multilayered photonic structures. Ultramicroscopy, 2013, 135, 95-98.	1.9	11
50	Fluorinated saccharides on the Si(001) surface. Applied Surface Science, 2013, 274, 221-230.	6.1	13
51	Photoemission study of the Si(111)-native SiO2/copper phthalocyanine (CuPc) ultra-thin film interface. Organic Electronics, 2012, 13, 1873-1880.	2.6	32
52	Bi-layer nanostructures of CuPc and Pd for resistance-type and SAW-type hydrogen gas sensors. Sensors and Actuators B: Chemical, 2012, 175, 255-262.	7.8	26
53	Comparative study of surface morphology of copper phthalocyanine ultra thin films deposited on Si (111) native and RCA-cleaned substrates. Thin Solid Films, 2012, 520, 3965-3970.	1.8	20
54	Bi-layer nanostructures of CuPc and Pd in SAW and resistance hydrogen sensor. Procedia Engineering, 2011, 25, 252-255.	1.2	1

#	Article	IF	CITATIONS
55	Influence of ambient air exposure on surface chemistry and electronic properties of thin copper phthalocyanine sensing layers. Thin Solid Films, 2011, 519, 2187-2192.	1.8	22
56	X-ray Photoelectron Spectroscopy characterization of native and RCA-treated Si (111) substrates and their influence on surface chemistry of copper phthalocyanine thin films. Thin Solid Films, 2010, 518, 2688-2694.	1.8	20
57	Influence of substrate doping on the surface chemistry and morphology of Copper Phthalocyanine ultra thin films on Si (111) substrates. Thin Solid Films, 2009, 517, 1630-1635.	1.8	23
58	Analysis of mechanism of carbon removal from GaAs(100) surface by atomic hydrogen. Applied Surface Science, 2008, 254, 8035-8040.	6.1	11
59	N-Doped carbon as a solid base catalyst for continuous flow Knoevenagel condensation. Reaction Chemistry and Engineering, 0, , .	3.7	7